Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models
- URL: http://arxiv.org/abs/2402.18059v3
- Date: Thu, 6 Jun 2024 04:49:37 GMT
- Title: Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models
- Authors: Mingjia Huo, Sai Ashish Somayajula, Youwei Liang, Ruisi Zhang, Farinaz Koushanfar, Pengtao Xie,
- Abstract summary: Large language models generate high-quality responses with potential misinformation.
Watermarking is pivotal in this context, which involves embedding hidden markers in texts.
We introduce a novel multi-objective optimization (MOO) approach for watermarking.
Our method simultaneously achieves detectability and semantic integrity.
- Score: 31.062753031312006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models generate high-quality responses with potential misinformation, underscoring the need for regulation by distinguishing AI-generated and human-written texts. Watermarking is pivotal in this context, which involves embedding hidden markers in texts during the LLM inference phase, which is imperceptible to humans. Achieving both the detectability of inserted watermarks and the semantic quality of generated texts is challenging. While current watermarking algorithms have made promising progress in this direction, there remains significant scope for improvement. To address these challenges, we introduce a novel multi-objective optimization (MOO) approach for watermarking that utilizes lightweight networks to generate token-specific watermarking logits and splitting ratios. By leveraging MOO to optimize for both detection and semantic objective functions, our method simultaneously achieves detectability and semantic integrity. Experimental results show that our method outperforms current watermarking techniques in enhancing the detectability of texts generated by LLMs while maintaining their semantic coherence. Our code is available at https://github.com/mignonjia/TS_watermark.
Related papers
- SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models [1.7188280334580197]
SimMark is a posthoc watermarking algorithm that makes large language models' outputs traceable without requiring access to the model's internal logits.
Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content.
arXiv Detail & Related papers (2025-02-05T00:21:01Z) - BiMarker: Enhancing Text Watermark Detection for Large Language Models with Bipolar Watermarks [19.689433249830465]
Existing watermarking techniques struggle with low watermark strength and stringent false-positive requirements.
tool splits generated text into positive and negative poles, enhancing detection without requiring additional computational resources.
arXiv Detail & Related papers (2025-01-21T14:32:50Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Topic-Based Watermarks for Large Language Models [46.71493672772134]
We propose a lightweight, topic-guided watermarking scheme for Large Language Model (LLM) output.
Our method achieves comparable perplexity to industry-leading systems, including Google's SynthID-Text.
arXiv Detail & Related papers (2024-04-02T17:49:40Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
It is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model.
This paper proposes an adaptive watermarking strategy to address this problem.
arXiv Detail & Related papers (2024-01-25T03:57:12Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
arXiv Detail & Related papers (2023-11-16T11:58:31Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
Current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection.
We propose an unforgeable publicly verifiable watermark algorithm named UPV that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages.
arXiv Detail & Related papers (2023-07-30T13:43:27Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - Who Wrote this Code? Watermarking for Code Generation [53.24895162874416]
We propose Selective WatErmarking via Entropy Thresholding (SWEET) to detect machine-generated text.
Our experiments show that SWEET significantly improves code quality preservation while outperforming all baselines.
arXiv Detail & Related papers (2023-05-24T11:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.