Characterizing Data Point Vulnerability via Average-Case Robustness
- URL: http://arxiv.org/abs/2307.13885v6
- Date: Mon, 8 Jul 2024 17:00:16 GMT
- Title: Characterizing Data Point Vulnerability via Average-Case Robustness
- Authors: Tessa Han, Suraj Srinivas, Himabindu Lakkaraju,
- Abstract summary: adversarial robustness is a standard framework, which views robustness of predictions through a binary lens.
We consider a complementary framework for robustness, called average-case robustness, which measures the fraction of points in a local region.
We show empirically that our estimators are accurate and efficient for standard deep learning models.
- Score: 29.881355412540557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Studying the robustness of machine learning models is important to ensure consistent model behaviour across real-world settings. To this end, adversarial robustness is a standard framework, which views robustness of predictions through a binary lens: either a worst-case adversarial misclassification exists in the local region around an input, or it does not. However, this binary perspective does not account for the degrees of vulnerability, as data points with a larger number of misclassified examples in their neighborhoods are more vulnerable. In this work, we consider a complementary framework for robustness, called average-case robustness, which measures the fraction of points in a local region that provides consistent predictions. However, computing this quantity is hard, as standard Monte Carlo approaches are inefficient especially for high-dimensional inputs. In this work, we propose the first analytical estimators for average-case robustness for multi-class classifiers. We show empirically that our estimators are accurate and efficient for standard deep learning models and demonstrate their usefulness for identifying vulnerable data points, as well as quantifying robustness bias of models. Overall, our tools provide a complementary view to robustness, improving our ability to characterize model behaviour.
Related papers
- Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study [61.65123150513683]
multimodal foundation models, such as CLIP, produce state-of-the-art zero-shot results.
It is reported that these models close the robustness gap by matching the performance of supervised models trained on ImageNet.
We show that CLIP leads to a significant robustness drop compared to supervised ImageNet models on our benchmark.
arXiv Detail & Related papers (2024-03-15T17:33:49Z) - Rethinking Robustness of Model Attributions [24.317595434521504]
We show that many attribution methods are fragile and have proposed improvements in either these methods or the model training.
We observe two main causes for fragile attributions: first, the existing metrics of robustness over-penalize even reasonable local shifts in attribution.
We propose simple ways to strengthen existing metrics and attribution methods that incorporate locality of pixels in robustness metrics and diversity of pixel locations in attributions.
arXiv Detail & Related papers (2023-12-16T20:20:38Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - Robustness of Machine Learning Models Beyond Adversarial Attacks [0.0]
We show that the widely used concept of adversarial robustness and closely related metrics are not necessarily valid metrics for determining the robustness of ML models.
We propose a flexible approach that models possible perturbations in input data individually for each application.
This is then combined with a probabilistic approach that computes the likelihood that a real-world perturbation will change a prediction.
arXiv Detail & Related papers (2022-04-21T12:09:49Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
We argue that fixed testsets are only able to capture a small portion of possible data variations and are thus limited and prone to generate new overfitted solutions.
To overcome these drawbacks, we suggest to estimate the robustness of a model directly from the structure of its learned feature-space.
arXiv Detail & Related papers (2021-06-23T10:52:29Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - How to compare adversarial robustness of classifiers from a global
perspective [0.0]
Adversarial attacks undermine the reliability of and trust in machine learning models.
Point-wise measures for specific threat models are currently the most popular tool for comparing the robustness of classifiers.
In this work, we use recently proposed robustness curves to show that point-wise measures fail to capture important global properties.
arXiv Detail & Related papers (2020-04-22T22:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.