Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study
- URL: http://arxiv.org/abs/2403.10499v1
- Date: Fri, 15 Mar 2024 17:33:49 GMT
- Title: Benchmarking Zero-Shot Robustness of Multimodal Foundation Models: A Pilot Study
- Authors: Chenguang Wang, Ruoxi Jia, Xin Liu, Dawn Song,
- Abstract summary: multimodal foundation models, such as CLIP, produce state-of-the-art zero-shot results.
It is reported that these models close the robustness gap by matching the performance of supervised models trained on ImageNet.
We show that CLIP leads to a significant robustness drop compared to supervised ImageNet models on our benchmark.
- Score: 61.65123150513683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-training image representations from the raw text about images enables zero-shot vision transfer to downstream tasks. Through pre-training on millions of samples collected from the internet, multimodal foundation models, such as CLIP, produce state-of-the-art zero-shot results that often reach competitiveness with fully supervised methods without the need for task-specific training. Besides the encouraging performance on classification accuracy, it is reported that these models close the robustness gap by matching the performance of supervised models trained on ImageNet under natural distribution shift. Because robustness is critical to real-world applications, especially safety-critical ones, in this paper, we present a comprehensive evaluation based on a large-scale robustness benchmark covering 7 natural, 3 synthetic distribution shifts, and 11 adversarial attacks. We use CLIP as a pilot study. We show that CLIP leads to a significant robustness drop compared to supervised ImageNet models on our benchmark, especially under synthetic distribution shift and adversarial attacks. Furthermore, data overlap analysis suggests that the observed robustness under natural distribution shifts could be attributed, at least in part, to data overlap. In summary, our evaluation shows a comprehensive evaluation of robustness is necessary; and there is a significant need to improve the robustness of zero-shot multimodal models.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Lipsum-FT: Robust Fine-Tuning of Zero-Shot Models Using Random Text Guidance [27.91782770050068]
Large-scale contrastive vision-language pre-trained models provide the zero-shot model achieving competitive performance across a range of image classification tasks without requiring training on downstream data.
Recent works have confirmed that additional fine-tuning of the zero-shot model on the reference data results in enhanced downstream performance, but compromises the model's robustness against distribution shifts.
We propose a novel robust fine-tuning algorithm, Lipsum-FT, that effectively utilizes the language modeling aspect of the vision-language pre-trained models.
arXiv Detail & Related papers (2024-04-01T02:01:33Z) - Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation [43.759808066264334]
We propose a weakly supervised self-training architecture with anchor regularization and low-rank finetuning to improve the robustness and efficiency of adaptation.
We validate the effectiveness on 5 types of downstream segmentation tasks including natural clean/corrupted images, medical images, camouflaged images and robotic images.
arXiv Detail & Related papers (2023-12-06T13:59:22Z) - Robustness Analysis on Foundational Segmentation Models [28.01242494123917]
In this work, we perform a robustness analysis of Visual Foundation Models (VFMs) for segmentation tasks.
We benchmark seven state-of-the-art segmentation architectures using 2 different datasets.
Our findings reveal several key insights: VFMs exhibit vulnerabilities to compression-induced corruptions, despite not outpacing all of unimodal models in robustness, multimodal models show competitive resilience in zero-shot scenarios, and VFMs demonstrate enhanced robustness for certain object categories.
arXiv Detail & Related papers (2023-06-15T16:59:42Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - Explicit Tradeoffs between Adversarial and Natural Distributional
Robustness [48.44639585732391]
In practice, models need to enjoy both types of robustness to ensure reliability.
In this work, we show that in fact, explicit tradeoffs exist between adversarial and natural distributional robustness.
arXiv Detail & Related papers (2022-09-15T19:58:01Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Rethinking Self-Supervision Objectives for Generalizable Coherence
Modeling [8.329870357145927]
Coherence evaluation of machine generated text is one of the principal applications of coherence models that needs to be investigated.
We explore training data and self-supervision objectives that result in a model that generalizes well across tasks.
We show empirically that increasing the density of negative samples improves the basic model, and using a global negative queue further improves and stabilizes the model while training with hard negative samples.
arXiv Detail & Related papers (2021-10-14T07:44:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.