Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution
- URL: http://arxiv.org/abs/2311.17340v1
- Date: Wed, 29 Nov 2023 03:38:56 GMT
- Title: Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution
- Authors: Shi Chen, Lefei Zhang, Liangpei Zhang
- Abstract summary: We propose a novel cross-scope spatial-spectral Transformer (CST) to investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution.
Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics.
Experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually.
- Score: 47.12985199570964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image super-resolution has attained widespread prominence to
enhance the spatial resolution of hyperspectral images. However,
convolution-based methods have encountered challenges in harnessing the global
spatial-spectral information. The prevailing transformer-based methods have not
adequately captured the long-range dependencies in both spectral and spatial
dimensions. To alleviate this issue, we propose a novel cross-scope
spatial-spectral Transformer (CST) to efficiently investigate long-range
spatial and spectral similarities for single hyperspectral image
super-resolution. Specifically, we devise cross-attention mechanisms in spatial
and spectral dimensions to comprehensively model the long-range
spatial-spectral characteristics. By integrating global information into the
rectangle-window self-attention, we first design a cross-scope spatial
self-attention to facilitate long-range spatial interactions. Then, by
leveraging appropriately characteristic spatial-spectral features, we construct
a cross-scope spectral self-attention to effectively capture the intrinsic
correlations among global spectral bands. Finally, we elaborate a concise
feed-forward neural network to enhance the feature representation capacity in
the Transformer structure. Extensive experiments over three hyperspectral
datasets demonstrate that the proposed CST is superior to other
state-of-the-art methods both quantitatively and visually. The code is
available at \url{https://github.com/Tomchenshi/CST.git}.
Related papers
- Unsupervised Hyperspectral and Multispectral Image Blind Fusion Based on Deep Tucker Decomposition Network with Spatial-Spectral Manifold Learning [15.86617273658407]
We propose an unsupervised blind fusion method for hyperspectral and multispectral images based on Tucker decomposition and spatial spectral manifold learning (DTDNML)
We show that this method enhances the accuracy and efficiency of hyperspectral and multispectral fusion on different remote sensing datasets.
arXiv Detail & Related papers (2024-09-15T08:58:26Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - SSF-Net: Spatial-Spectral Fusion Network with Spectral Angle Awareness
for Hyperspectral Object Tracking [21.664141982246598]
Hyperspectral video (HSV) offers valuable spatial, spectral, and temporal information simultaneously.
Existing methods primarily focus on band regrouping and rely on RGB trackers for feature extraction.
In this paper, a spatial-spectral fusion network with spectral angle awareness (SST-Net) is proposed for hyperspectral (HS) object tracking.
arXiv Detail & Related papers (2024-03-09T09:37:13Z) - Hyperspectral Image Reconstruction via Combinatorial Embedding of
Cross-Channel Spatio-Spectral Clues [6.580484964018551]
Existing learning-based hyperspectral reconstruction methods show limitations in fully exploiting the information among the hyperspectral bands.
We propose to investigate the inter-dependencies in their respective hyperspectral space.
These embedded features can be fully exploited by querying the inter-channel correlations.
arXiv Detail & Related papers (2023-12-18T11:37:19Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral and multispectral image fusion under spectrally varying
spatial blurs -- Application to high dimensional infrared astronomical
imaging [11.243400478302767]
We propose a data fusion method which combines the benefits of each image to recover a high-spectral resolution data variant.
We conduct experiments on a realistic synthetic dataset of simulated observation of the upcoming James Webb Space Telescope.
arXiv Detail & Related papers (2019-12-26T13:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.