Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching
- URL: http://arxiv.org/abs/2307.14071v1
- Date: Wed, 26 Jul 2023 09:47:37 GMT
- Title: Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching
- Authors: Junpeng Jing, Jiankun Li, Pengfei Xiong, Jiangyu Liu, Shuaicheng Liu,
Yichen Guo, Xin Deng, Mai Xu, Lai Jiang, Leonid Sigal
- Abstract summary: Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
- Score: 77.133400999703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correlation based stereo matching has achieved outstanding performance, which
pursues cost volume between two feature maps. Unfortunately, current methods
with a fixed model do not work uniformly well across various datasets, greatly
limiting their real-world applicability. To tackle this issue, this paper
proposes a new perspective to dynamically calculate correlation for robust
stereo matching. A novel Uncertainty Guided Adaptive Correlation (UGAC) module
is introduced to robustly adapt the same model for different scenarios.
Specifically, a variance-based uncertainty estimation is employed to adaptively
adjust the sampling area during warping operation. Additionally, we improve the
traditional non-parametric warping with learnable parameters, such that the
position-specific weights can be learned. We show that by empowering the
recurrent network with the UGAC module, stereo matching can be exploited more
robustly and effectively. Extensive experiments demonstrate that our method
achieves state-of-the-art performance over the ETH3D, KITTI, and Middlebury
datasets when employing the same fixed model over these datasets without any
retraining procedure. To target real-time applications, we further design a
lightweight model based on UGAC, which also outperforms other methods over
KITTI benchmarks with only 0.6 M parameters.
Related papers
- Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Model Merging by Uncertainty-Based Gradient Matching [70.54580972266096]
We propose a new uncertainty-based scheme to improve the performance by reducing the mismatch.
Our new method gives consistent improvements for large language models and vision transformers.
arXiv Detail & Related papers (2023-10-19T15:02:45Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - Unifying Flow, Stereo and Depth Estimation [121.54066319299261]
We present a unified formulation and model for three motion and 3D perception tasks.
We formulate all three tasks as a unified dense correspondence matching problem.
Our model naturally enables cross-task transfer since the model architecture and parameters are shared across tasks.
arXiv Detail & Related papers (2022-11-10T18:59:54Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
We present a novel domain-adaptive approach called AdaStereo to align multi-level representations for deep stereo matching networks.
Our models achieve state-of-the-art cross-domain performance on multiple benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo.
Our method is robust to various domain adaptation settings, and can be easily integrated into quick adaptation application scenarios and real-world deployments.
arXiv Detail & Related papers (2021-12-09T15:10:47Z) - From Sound Representation to Model Robustness [82.21746840893658]
We investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
Averaged over various experiments on three environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures.
arXiv Detail & Related papers (2020-07-27T17:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.