Parameter-Efficient Fine-Tuning With Adapters
- URL: http://arxiv.org/abs/2405.05493v1
- Date: Thu, 9 May 2024 01:40:38 GMT
- Title: Parameter-Efficient Fine-Tuning With Adapters
- Authors: Keyu Chen, Yuan Pang, Zi Yang,
- Abstract summary: This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
- Score: 5.948206235442328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the arena of language model fine-tuning, the traditional approaches, such as Domain-Adaptive Pretraining (DAPT) and Task-Adaptive Pretraining (TAPT), although effective, but computational intensive. This research introduces a novel adaptation method utilizing the UniPELT framework as a base and added a PromptTuning Layer, which significantly reduces the number of trainable parameters while maintaining competitive performance across various benchmarks. Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters. We evaluate our approach using three diverse datasets: the GLUE benchmark, a domain-specific dataset comprising four distinct areas, and the Stanford Question Answering Dataset 1.1 (SQuAD). Our results demonstrate that our customized adapter-based method achieves performance comparable to full model fine-tuning, DAPT+TAPT and UniPELT strategies while requiring fewer or equivalent amount of parameters. This parameter efficiency not only alleviates the computational burden but also expedites the adaptation process. The study underlines the potential of adapters in achieving high performance with significantly reduced resource consumption, suggesting a promising direction for future research in parameter-efficient fine-tuning.
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)
Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.
We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
Point cloud analysis has achieved outstanding performance by transferring point cloud pre-trained models.
Existing methods for model adaptation usually update all model parameters, which is inefficient as it relies on high computational costs.
In this paper, we aim to study parameter-efficient transfer learning for point cloud analysis with an ideal trade-off between task performance and parameter efficiency.
arXiv Detail & Related papers (2024-03-03T08:25:04Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA) is a novel framework built on the adapter-tuning and hypernetwork.
It introduces an instance-dense retriever and prototypical hypernetwork to generate conditional modules in a sample-efficient manner.
We show that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.
arXiv Detail & Related papers (2023-10-18T02:42:17Z) - Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing [8.88477151877883]
High-capacity pre-trained models have revolutionized problem-solving in computer vision.
We propose a novel Adapter Re-Composing (ARC) strategy that addresses efficient pre-trained model adaptation.
Our approach considers the reusability of adaptation parameters and introduces a parameter-sharing scheme.
arXiv Detail & Related papers (2023-10-10T01:04:15Z) - Parameter and Computation Efficient Transfer Learning for
Vision-Language Pre-trained Models [79.34513906324727]
In this paper, we aim at parameter and efficient transfer learning (PCETL) for vision-language pre-trained models.
We propose a novel dynamic architecture skipping (DAS) approach towards effective PCETL.
arXiv Detail & Related papers (2023-09-04T09:34:33Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
We introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation.
Our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.
arXiv Detail & Related papers (2023-05-26T08:44:42Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.