Emerging Statistical Machine Learning Techniques for Extreme Temperature
Forecasting in U.S. Cities
- URL: http://arxiv.org/abs/2307.14285v1
- Date: Wed, 26 Jul 2023 16:38:32 GMT
- Title: Emerging Statistical Machine Learning Techniques for Extreme Temperature
Forecasting in U.S. Cities
- Authors: Kameron B. Kinast and Ernest Fokou\'e
- Abstract summary: We present a comprehensive analysis of extreme temperature patterns using emerging statistical machine learning techniques.
We apply these methods to climate time series data from five most populated U.S. cities.
Our findings highlight the differences between the statistical methods and identify Multilayer Perceptrons as the most effective approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a comprehensive analysis of extreme temperature
patterns using emerging statistical machine learning techniques. Our research
focuses on exploring and comparing the effectiveness of various statistical
models for climate time series forecasting. The models considered include
Auto-Regressive Integrated Moving Average, Exponential Smoothing, Multilayer
Perceptrons, and Gaussian Processes. We apply these methods to climate time
series data from five most populated U.S. cities, utilizing Python and Julia to
demonstrate the role of statistical computing in understanding climate change
and its impacts. Our findings highlight the differences between the statistical
methods and identify Multilayer Perceptrons as the most effective approach.
Additionally, we project extreme temperatures using this best-performing
method, up to 2030, and examine whether the temperature changes are greater
than zero, thereby testing a hypothesis.
Related papers
- Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Fine-tune your Classifier: Finding Correlations With Temperature [2.071516130824992]
We analyze the impact of temperature on classification tasks by describing a dataset as a set of statistics computed on representations.
We study the correlation between these extracted statistics and the observed optimal temperatures.
arXiv Detail & Related papers (2022-10-18T09:48:46Z) - MLRM: A Multiple Linear Regression based Model for Average Temperature
Prediction of A Day [3.6704226968275258]
We aim to predict the weather of an area using past meteorological data and features using the Multiple Linear Regression Model.
The model is successfully able to predict the average temperature of a day with an error of 2.8 degrees Celsius.
arXiv Detail & Related papers (2022-03-11T10:22:57Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
We train two "loosely conditioned" Generative Adversarial Networks (GANs) that emulate daily precipitation output from a fully coupled Earth system model.
GANs are trained to producetemporal samples: 32 days of precipitation over a 64x128 regular grid discretizing the globe.
Our trained GANs can rapidly generate numerous realizations at a vastly reduced computational expense.
arXiv Detail & Related papers (2021-04-29T02:10:08Z) - ClimAlign: Unsupervised statistical downscaling of climate variables via
normalizing flows [0.7734726150561086]
We present ClimAlign, a novel method for unsupervised, generative downscaling using adaptations of recent work in normalizing for variational inference.
We show that our method achieves comparable predictive performance to existing supervised downscaling methods while simultaneously allowing for both conditional and unconditional sampling from the joint distribution over high and low resolution spatial fields.
arXiv Detail & Related papers (2020-08-11T13:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.