EdgeConvEns: Convolutional Ensemble Learning for Edge Intelligence
- URL: http://arxiv.org/abs/2307.14381v1
- Date: Tue, 25 Jul 2023 20:07:32 GMT
- Title: EdgeConvEns: Convolutional Ensemble Learning for Edge Intelligence
- Authors: Ilkay Sikdokur, \.Inci M. Bayta\c{s}, Arda Yurdakul
- Abstract summary: Deep edge intelligence aims to deploy deep learning models that demand computationally expensive training in the edge network with limited computational power.
This study proposes a convolutional ensemble learning approach, coined EdgeConvEns, that facilitates training heterogeneous weak models on edge and learning to ensemble them where data on edge are heterogeneously distributed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep edge intelligence aims to deploy deep learning models that demand
computationally expensive training in the edge network with limited
computational power. Moreover, many deep edge intelligence applications require
handling distributed data that cannot be transferred to a central server due to
privacy concerns. Decentralized learning methods, such as federated learning,
offer solutions where models are learned collectively by exchanging learned
weights. However, they often require complex models that edge devices may not
handle and multiple rounds of network communication to achieve state-of-the-art
performances. This study proposes a convolutional ensemble learning approach,
coined EdgeConvEns, that facilitates training heterogeneous weak models on edge
and learning to ensemble them where data on edge are heterogeneously
distributed. Edge models are implemented and trained independently on
Field-Programmable Gate Array (FPGA) devices with various computational
capacities. Learned data representations are transferred to a central server
where the ensemble model is trained with the learned features received from the
edge devices to boost the overall prediction performance. Extensive experiments
demonstrate that the EdgeConvEns can outperform the state-of-the-art
performance with fewer communications and less data in various training
scenarios.
Related papers
- Leveraging Federated Learning and Edge Computing for Recommendation
Systems within Cloud Computing Networks [3.36271475827981]
Key technology for edge intelligence is the privacy-protecting machine learning paradigm known as Federated Learning (FL), which enables data owners to train models without having to transfer raw data to third-party servers.
To reduce node failures and device exits, a Hierarchical Federated Learning (HFL) framework is proposed, where a designated cluster leader supports the data owner through intermediate model aggregation.
In order to mitigate the impact of soft clicks on the quality of user experience (QoE), the authors model the user QoE as a comprehensive system cost.
arXiv Detail & Related papers (2024-03-05T17:58:26Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Privacy-Preserving Serverless Edge Learning with Decentralized Small
Data [13.254530176359182]
Distributed training strategies have recently become a promising approach to ensure data privacy when training deep models.
This paper extends conventional serverless platforms with serverless edge learning architectures and provides an efficient distributed training framework from the networking perspective.
arXiv Detail & Related papers (2021-11-29T21:04:49Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Complexity-aware Adaptive Training and Inference for Edge-Cloud
Distributed AI Systems [9.273593723275544]
IoT and machine learning applications create large amounts of data that require real-time processing.
We propose a distributed AI system to exploit both the edge and the cloud for training and inference.
arXiv Detail & Related papers (2021-09-14T05:03:54Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity
Edge Devices [3.812706195714961]
We build a prototype distributed system of Raspberry Pis communicating via WiFi running NeuroEvolutionary (NE) learning and inference.
We evaluate the performance of such a collaborative system and detail the compute/communication characteristics of different arrangements of the system.
arXiv Detail & Related papers (2020-08-27T01:49:21Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous.
This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning.
arXiv Detail & Related papers (2020-05-31T12:45:06Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.