CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity
Edge Devices
- URL: http://arxiv.org/abs/2008.11881v1
- Date: Thu, 27 Aug 2020 01:49:21 GMT
- Title: CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity
Edge Devices
- Authors: Parth Mannan, Ananda Samajdar and Tushar Krishna
- Abstract summary: We build a prototype distributed system of Raspberry Pis communicating via WiFi running NeuroEvolutionary (NE) learning and inference.
We evaluate the performance of such a collaborative system and detail the compute/communication characteristics of different arrangements of the system.
- Score: 3.812706195714961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in machine learning algorithms, especially the
development of Deep Neural Networks (DNNs) have transformed the landscape of
Artificial Intelligence (AI). With every passing day, deep learning based
methods are applied to solve new problems with exceptional results. The portal
to the real world is the edge. The true impact of AI can only be fully realized
if we can have AI agents continuously interacting with the real world and
solving everyday problems. Unfortunately, high compute and memory requirements
of DNNs acts a huge barrier towards this vision. Today we circumvent this
problem by deploying special purpose inference hardware on the edge while
procuring trained models from the cloud. This approach, however, relies on
constant interaction with the cloud for transmitting all the data, training on
massive GPU clusters, and downloading updated models. This is challenging for
bandwidth, privacy, and constant connectivity concerns that autonomous agents
may exhibit. In this paper we evaluate techniques for enabling adaptive
intelligence on edge devices with zero interaction with any high-end
cloud/server. We build a prototype distributed system of Raspberry Pis
communicating via WiFi running NeuroEvolutionary (NE) learning and inference.
We evaluate the performance of such a collaborative system and detail the
compute/communication characteristics of different arrangements of the system
that trade-off parallelism versus communication. Using insights from our
analysis, we also propose algorithmic modifications to reduce communication by
up to 3.6x during the learning phase to enhance scalability even further and
match performance of higher end computing devices at scale. We believe that
these insights will enable algorithm-hardware co-design efforts for enabling
continuous learning on the edge.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Evolution of Convolutional Neural Network (CNN): Compute vs Memory
bandwidth for Edge AI [0.0]
This article explores the relationship between CNN compute requirements and memory bandwidth in the context of Edge AI.
We examine the impact of increasing model complexity on both computational requirements and memory access patterns.
This analysis provides insights into designing efficient architectures and potential hardware accelerators in enhancing CNN performance on edge devices.
arXiv Detail & Related papers (2023-09-24T09:11:22Z) - EdgeConvEns: Convolutional Ensemble Learning for Edge Intelligence [0.0]
Deep edge intelligence aims to deploy deep learning models that demand computationally expensive training in the edge network with limited computational power.
This study proposes a convolutional ensemble learning approach, coined EdgeConvEns, that facilitates training heterogeneous weak models on edge and learning to ensemble them where data on edge are heterogeneously distributed.
arXiv Detail & Related papers (2023-07-25T20:07:32Z) - Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs [64.26714148634228]
congestion control (CC) algorithms become extremely difficult to design.
It is currently not possible to deploy AI models on network devices due to their limited computational capabilities.
We build a computationally-light solution based on a recent reinforcement learning CC algorithm.
arXiv Detail & Related papers (2022-07-05T20:42:24Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.