論文の概要: When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review
- arxiv url: http://arxiv.org/abs/2307.14382v2
- Date: Wed, 28 Aug 2024 13:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 21:31:09.064610
- Title: When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review
- Title(参考訳): マルチタスク学習が部分的スーパービジョンに出会ったとき:コンピュータビジョンのレビュー
- Authors: Maxime Fontana, Michael Spratling, Miaojing Shi,
- Abstract要約: マルチタスク学習(MTL)は,相互関係を利用して複数のタスクを同時に学習することを目的としている。
このレビューは、これらの課題に対処するために、異なる部分的な監視設定の下でMTLをどのように活用するかに焦点を当てる。
- 参考スコア(独自算出の注目度): 7.776434991976473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships. By using shared resources to simultaneously calculate multiple outputs, this learning paradigm has the potential to have lower memory requirements and inference times compared to the traditional approach of using separate methods for each task. Previous work in MTL has mainly focused on fully-supervised methods, as task relationships can not only be leveraged to lower the level of data-dependency of those methods but they can also improve performance. However, MTL introduces a set of challenges due to a complex optimisation scheme and a higher labeling requirement. This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges. First, this review analyses how MTL traditionally uses different parameter sharing techniques to transfer knowledge in between tasks. Second, it presents the different challenges arising from such a multi-objective optimisation scheme. Third, it introduces how task groupings can be achieved by analysing task relationships. Fourth, it focuses on how partially supervised methods applied to MTL can tackle the aforementioned challenges. Lastly, this review presents the available datasets, tools and benchmarking results of such methods.
- Abstract(参考訳): マルチタスク学習(MTL)は,相互関係を利用して複数のタスクを同時に学習することを目的としている。
複数のアウトプットを同時に計算するために共有リソースを使用することで、この学習パラダイムは、各タスクに別々のメソッドを使用するという従来のアプローチに比べて、メモリ要求と推論時間が少なくなる可能性がある。
タスク関係は、これらのメソッドのデータ依存性のレベルを下げるだけでなく、パフォーマンスも改善できるため、MTLのこれまでの作業は主に、完全に教師されたメソッドに焦点を当ててきた。
しかし、MTLは、複雑な最適化スキームとより高いラベリング要求のために、一連の課題を導入している。
このレビューは、これらの課題に対処するために、異なる部分的な監視設定の下でMTLをどのように活用するかに焦点を当てる。
まず,MTLは従来,タスク間の知識伝達に異なるパラメータ共有技術を用いてきた。
第二に、このような多目的最適化スキームから生じる異なる課題を提示する。
第3に、タスク関係を分析してタスクグループ化を実現する方法を紹介している。
第4に、MTLに適用された部分的教師付き手法が、上記の課題にどのように対処できるかに焦点を当てる。
最後に、これらの手法の利用可能なデータセット、ツール、ベンチマーク結果を示す。
関連論文リスト
- SGW-based Multi-Task Learning in Vision Tasks [8.459976488960269]
データセットの規模が拡大し、タスクの複雑さが増すにつれ、知識の共有はますます困難になってきている。
情報ボトルネック知識抽出モジュール(KEM)を提案する。
このモジュールは,情報の流れを制約することでタスク間干渉を減らすことを目的としており,計算複雑性を低減する。
論文 参考訳(メタデータ) (2024-10-03T13:56:50Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
本稿では,既存のMTL手法の効率性に焦点をあてる。
バックボーンを小さくしたメソッドの大規模な実験と,MetaGraspNetデータセットを新しいテストグラウンドとして実施する。
また,MTLにおける課題の新規かつ効率的な識別子として,特徴分散尺度を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:15:55Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
MTL(Multi-Task Learning)は、従来のSTL(Single-Task Learning)よりも性能が向上し、普及した強力な技術である。
しかし、MTLは指数的なタスクグルーピング数が多いため、しばしば困難である。
本稿では,これらの課題に対処し,課題分類のためのスケーラブルでモジュール化されたソリューションを提供する新しいデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2023-07-07T03:54:26Z) - Equitable Multi-task Learning [18.65048321820911]
マルチタスク学習(MTL)は、CV、NLP、IRといった様々な研究領域で大きな成功を収めている。
本稿では,EMTLという新しいマルチタスク最適化手法を提案する。
本手法は,2つの研究領域の公開ベンチマークデータセットにおいて,最先端の手法よりも安定して性能を向上する。
論文 参考訳(メタデータ) (2023-06-15T03:37:23Z) - "It's a Match!" -- A Benchmark of Task Affinity Scores for Joint
Learning [74.14961250042629]
MTL(Multi-Task Learning)は、その成功の条件を特徴づけることが、ディープラーニングにおいて依然としてオープンな問題である、と約束する。
共同学習におけるタスク親和性の推定は重要な取り組みである。
最近の研究は、訓練条件自体がMTLの結果に重大な影響を与えることを示唆している。
しかし,本研究では,タスク親和性評価手法の有効性を評価するためのベンチマークが欠落している。
論文 参考訳(メタデータ) (2023-01-07T15:16:35Z) - When to Use Multi-Task Learning vs Intermediate Fine-Tuning for
Pre-Trained Encoder Transfer Learning [15.39115079099451]
近年,自然言語処理における伝達学習(TL)への関心が高まっている。
微調整中に複数の教師付きデータセットを使用するための3つの主要な戦略が登場した。
GLUEデータセットの包括的解析において,3つのTL手法を比較した。
論文 参考訳(メタデータ) (2022-05-17T06:48:45Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
マルチタスク学習(MTL)では、複数のタスクを同時に予測するためにジョイントモデルを訓練する。
これらの異なるタスクの勾配が矛盾する可能性があるため、MTLのジョイントモデルを訓練すると、対応するシングルタスクモデルよりも低いパフォーマンスが得られる。
本稿では,パラメータ更新のジョイント方向で合意に達するためのタスクを交渉する交渉ゲームとして,勾配の組み合わせステップを考察する。
論文 参考訳(メタデータ) (2022-02-02T13:21:53Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
MTL(Multi-Task Learning)は、関連するタスク間で表現を共有することで、モデル一般化を強化することを目的としている。
そこで本研究では,異なるデータセットから利用可能な監視信号を活用するために,半教師付きマルチタスク学習(MTL)手法を提案する。
本稿では,データセット間の整合性の問題を軽減するために,様々なアライメントの定式化を施したドメイン認識識別器構造を提案する。
論文 参考訳(メタデータ) (2021-10-14T07:43:39Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。