Single Channel Speech Enhancement Using U-Net Spiking Neural Networks
- URL: http://arxiv.org/abs/2307.14464v1
- Date: Wed, 26 Jul 2023 19:10:29 GMT
- Title: Single Channel Speech Enhancement Using U-Net Spiking Neural Networks
- Authors: Abir Riahi and \'Eric Plourde
- Abstract summary: Speech enhancement (SE) is crucial for reliable communication devices or robust speech recognition systems.
We propose a novel approach to SE using a spiking neural network (SNN) based on a U-Net architecture.
SNNs are suitable for processing data with a temporal dimension, such as speech, and are known for their energy-efficient implementation on neuromorphic hardware.
- Score: 2.436681150766912
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Speech enhancement (SE) is crucial for reliable communication devices or
robust speech recognition systems. Although conventional artificial neural
networks (ANN) have demonstrated remarkable performance in SE, they require
significant computational power, along with high energy costs. In this paper,
we propose a novel approach to SE using a spiking neural network (SNN) based on
a U-Net architecture. SNNs are suitable for processing data with a temporal
dimension, such as speech, and are known for their energy-efficient
implementation on neuromorphic hardware. As such, SNNs are thus interesting
candidates for real-time applications on devices with limited resources. The
primary objective of the current work is to develop an SNN-based model with
comparable performance to a state-of-the-art ANN model for SE. We train a deep
SNN using surrogate-gradient-based optimization and evaluate its performance
using perceptual objective tests under different signal-to-noise ratios and
real-world noise conditions. Our results demonstrate that the proposed
energy-efficient SNN model outperforms the Intel Neuromorphic Deep Noise
Suppression Challenge (Intel N-DNS Challenge) baseline solution and achieves
acceptable performance compared to an equivalent ANN model.
Related papers
- A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention [2.5075774828443467]
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for object detection tasks.
While Spiking Neural Networks (SNNs) are a natural match for event-based sensory data, Artificial Neural Networks (ANNs) tend to display more stable training dynamics.
We introduce the first Hybrid Attention-based SNN-ANN backbone for object detection using event cameras.
arXiv Detail & Related papers (2024-03-15T10:28:31Z) - sVAD: A Robust, Low-Power, and Light-Weight Voice Activity Detection
with Spiking Neural Networks [51.516451451719654]
Spiking Neural Networks (SNNs) are known to be biologically plausible and power-efficient.
This paper introduces a novel SNN-based Voice Activity Detection model, referred to as sVAD.
It provides effective auditory feature representation through SincNet and 1D convolution, and improves noise robustness with attention mechanisms.
arXiv Detail & Related papers (2024-03-09T02:55:44Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
Spiking Networks (SNNs) are a promising energy-efficient alternative to conventional artificial neural networks.
In this work, we focus on three key questions regarding inherent redundancy in SNNs.
We propose an Advance Attention (ASA) module to harness SNNs' redundancy.
arXiv Detail & Related papers (2023-08-16T08:58:25Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE)
We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels.
The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
arXiv Detail & Related papers (2022-11-09T09:19:15Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
arXiv Detail & Related papers (2020-03-17T08:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.