SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking
- URL: http://arxiv.org/abs/2003.07584v3
- Date: Sat, 19 Jun 2021 05:25:33 GMT
- Title: SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking
- Authors: Yihao Luo, Min Xu, Caihong Yuan, Xiang Cao, Liangqi Zhang, Yan Xu,
Tianjiang Wang and Qi Feng
- Abstract summary: SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
- Score: 20.595208488431766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently spiking neural networks (SNNs), the third-generation of neural
networks has shown remarkable capabilities of energy-efficient computing, which
is a promising alternative for deep neural networks (DNNs) with high energy
consumption. SNNs have reached competitive results compared to DNNs in
relatively simple tasks and small datasets such as image classification and
MNIST/CIFAR, while few studies on more challenging vision tasks on complex
datasets. In this paper, we focus on extending deep SNNs to object tracking, a
more advanced vision task with embedded applications and energy-saving
requirements, and present a spike-based Siamese network called SiamSNN.
Specifically, we propose an optimized hybrid similarity estimation method to
exploit temporal information in the SNNs, and introduce a novel two-status
coding scheme to optimize the temporal distribution of output spike trains for
further improvements. SiamSNN is the first deep SNN tracker that achieves short
latency and low precision loss on the visual object tracking benchmarks
OTB2013/2015, VOT2016/2018, and GOT-10k. Moreover, SiamSNN achieves notably low
energy consumption and real-time on Neuromorphic chip TrueNorth.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Deep Directly-Trained Spiking Neural Networks for Object Detection [20.594942840081757]
EMS-YOLO is a novel directly-trained SNN framework for object detection.
We design a full-spike residual block, EMS-ResNet, which can effectively extend the depth of the directly-trained SNN with low power consumption.
It is shown that our model could achieve comparable performance to the ANN with the same architecture while consuming 5.83 times less energy.
arXiv Detail & Related papers (2023-07-21T08:10:26Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
In this paper, we explore the SNN applications beyond classification and present semantic segmentation networks configured with spiking neurons.
arXiv Detail & Related papers (2021-10-14T21:53:03Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.