The detection and rectification for identity-switch based on unfalsified
control
- URL: http://arxiv.org/abs/2307.14591v1
- Date: Thu, 27 Jul 2023 02:30:12 GMT
- Title: The detection and rectification for identity-switch based on unfalsified
control
- Authors: Junchao Huang, Xiaoqi He and Sheng Zhao
- Abstract summary: The purpose of multi-object tracking (MOT) is to continuously track and identify objects detected in videos.
Currently, most methods for multi-object tracking model the motion information and combine it with appearance information to determine and track objects.
In this paper, unfalsified control is employed to address the ID-switch problem in multi-object tracking.
- Score: 12.983011293631199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of multi-object tracking (MOT) is to continuously track and
identify objects detected in videos. Currently, most methods for multi-object
tracking model the motion information and combine it with appearance
information to determine and track objects. In this paper, unfalsified control
is employed to address the ID-switch problem in multi-object tracking. We
establish sequences of appearance information variations for the trajectories
during the tracking process and design a detection and rectification module
specifically for ID-switch detection and recovery. We also propose a simple and
effective strategy to address the issue of ambiguous matching of appearance
information during the data association process. Experimental results on
publicly available MOT datasets demonstrate that the tracker exhibits excellent
effectiveness and robustness in handling tracking errors caused by occlusions
and rapid movements.
Related papers
- ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
We introduce ADA-Track, a novel end-to-end framework for 3D MOT from multi-view cameras.
We introduce a learnable data association module based on edge-augmented cross-attention.
We integrate this association module into the decoder layer of a DETR-based 3D detector.
arXiv Detail & Related papers (2024-05-14T19:02:33Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
Occlusion-Aware Attention (OAA) module in the detector highlights the object features while suppressing the occluded background regions.
OAA can serve as a modulator that enhances the detector for some potentially occluded objects.
We design a Re-ID embedding matching block based on the optimal transport problem.
arXiv Detail & Related papers (2023-08-30T06:56:53Z) - SCTracker: Multi-object tracking with shape and confidence constraints [11.210661553388615]
This paper proposes a multi-object tracker based on shape constraint and confidence named SCTracker.
Intersection of Union distance with shape constraints is applied to calculate the cost matrix between tracks and detections.
The Kalman Filter based on the detection confidence is used to update the motion state to improve the tracking performance when the detection has low confidence.
arXiv Detail & Related papers (2023-05-16T15:18:42Z) - OmniTracker: Unifying Object Tracking by Tracking-with-Detection [119.51012668709502]
OmniTracker is presented to resolve all the tracking tasks with a fully shared network architecture, model weights, and inference pipeline.
Experiments on 7 tracking datasets, including LaSOT, TrackingNet, DAVIS16-17, MOT17, MOTS20, and YTVIS19, demonstrate that OmniTracker achieves on-par or even better results than both task-specific and unified tracking models.
arXiv Detail & Related papers (2023-03-21T17:59:57Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Online Multi-Object Tracking with Unsupervised Re-Identification
Learning and Occlusion Estimation [80.38553821508162]
Occlusion between different objects is a typical challenge in Multi-Object Tracking (MOT)
In this paper, we focus on online multi-object tracking and design two novel modules to handle these problems.
The proposed unsupervised re-identification learning module does not require any (pseudo) identity information nor suffer from the scalability issue.
Our study shows that, when applied to state-of-the-art MOT methods, the proposed unsupervised re-identification learning is comparable to supervised re-identification learning.
arXiv Detail & Related papers (2022-01-04T18:59:58Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - TrackFormer: Multi-Object Tracking with Transformers [92.25832593088421]
TrackFormer is an end-to-end multi-object tracking and segmentation model based on an encoder-decoder Transformer architecture.
New track queries are spawned by the DETR object detector and embed the position of their corresponding object over time.
TrackFormer achieves a seamless data association between frames in a new tracking-by-attention paradigm.
arXiv Detail & Related papers (2021-01-07T18:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.