SCTracker: Multi-object tracking with shape and confidence constraints
- URL: http://arxiv.org/abs/2305.09523v1
- Date: Tue, 16 May 2023 15:18:42 GMT
- Title: SCTracker: Multi-object tracking with shape and confidence constraints
- Authors: Huan Mao, Yulin Chen, Zongtan Li, Feng Chen, Pingping Chen
- Abstract summary: This paper proposes a multi-object tracker based on shape constraint and confidence named SCTracker.
Intersection of Union distance with shape constraints is applied to calculate the cost matrix between tracks and detections.
The Kalman Filter based on the detection confidence is used to update the motion state to improve the tracking performance when the detection has low confidence.
- Score: 11.210661553388615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection-based tracking is one of the main methods of multi-object tracking.
It can obtain good tracking results when using excellent detectors but it may
associate wrong targets when facing overlapping and low-confidence detections.
To address this issue, this paper proposes a multi-object tracker based on
shape constraint and confidence named SCTracker. In the data association stage,
an Intersection of Union distance with shape constraints is applied to
calculate the cost matrix between tracks and detections, which can effectively
avoid the track tracking to the wrong target with the similar position but
inconsistent shape, so as to improve the accuracy of data association.
Additionally, the Kalman Filter based on the detection confidence is used to
update the motion state to improve the tracking performance when the detection
has low confidence. Experimental results on MOT 17 dataset show that the
proposed method can effectively improve the tracking performance of
multi-object tracking.
Related papers
- ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
Multi-object tracking (MOT) is a critical technology in computer vision, designed to detect multiple targets in video sequences and assign each target a unique ID per frame.
Existed MOT methods excel at accurately tracking multiple objects in real-time across various scenarios.
We propose a novel ConsistencyTrack, joint detection and tracking(JDT) framework that formulates detection and association as a denoising diffusion process on bounding boxes.
arXiv Detail & Related papers (2024-08-28T05:53:30Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
We propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery.
Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples.
Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss.
arXiv Detail & Related papers (2024-03-28T08:54:40Z) - Adaptive Confidence Threshold for ByteTrack in Multi-Object Tracking [9.156625199253947]
ByteTrack, a simple tracking algorithm, enables the simultaneous tracking of multiple objects.
We introduce a novel and adaptive approach to differentiate between high and low-confidence detections.
arXiv Detail & Related papers (2023-12-04T06:01:46Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
This study offers a bi-directional matching algorithm for multi-object tracking.
A stranded area is used in the matching algorithm to temporarily store the objects that fail to be tracked.
In the MOT17 challenge, the proposed algorithm achieves 63.4% MOTA, 55.3% IDF1, and 20.1 FPS tracking speed.
arXiv Detail & Related papers (2023-03-15T08:38:08Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
We propose a compact memory embedding to enhance the discrimination of the segmentation-based deformable visual tracking method.
Our method outperforms the excellent segmentation-based trackers, i.e., D3S and SiamMask on DAVIS 2017 benchmark.
arXiv Detail & Related papers (2021-11-23T03:07:12Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.