Multi-Valued Partial Order Plans in Numeric Planning
- URL: http://arxiv.org/abs/2307.14660v1
- Date: Thu, 27 Jul 2023 07:24:30 GMT
- Title: Multi-Valued Partial Order Plans in Numeric Planning
- Authors: Hayyan Helal, Gerhard Lakemeyer
- Abstract summary: We will start by reformulating a numeric planning problem known as restricted tasks as a search problem.
We will then show how an NP-complete fragment of numeric planning can be found by using Booleans.
To achieve this, we will develop the idea of multi-valued partial order plans.
- Score: 14.290119665435121
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many planning formalisms allow for mixing numeric with Boolean effects.
However, most of these formalisms are undecidable. In this paper, we will
analyze possible causes for this undecidability by studying the number of
different occurrences of actions, an approach that proved useful for metric
fluents before. We will start by reformulating a numeric planning problem known
as restricted tasks as a search problem. We will then show how an NP-complete
fragment of numeric planning can be found by using heuristics. To achieve this,
we will develop the idea of multi-valued partial order plans, a least
committing compact representation for (sequential and parallel) plans. Finally,
we will study optimization techniques for this representation to incorporate
soft preconditions.
Related papers
- Learning Interpretable Classifiers for PDDL Planning [0.0]
We consider the problem of interpretable models that recognize the behaviour of an agent compared to other agents, on a set of similar planning tasks expressed in PDDL.
Our approach consists in learning logical formulas, from a small set of examples that show how an agent solved small planning instances.
We show that learning such formulas is computationally intractable, as it is an NP-hard problem.
arXiv Detail & Related papers (2024-10-13T21:12:45Z) - Planning with OWL-DL Ontologies (Extended Version) [6.767885381740952]
We present a black-box that supports the full power expressive DL.
Our main algorithm relies on rewritings of the OWL-mediated planning specifications into PDDL.
We evaluate our implementation on benchmark sets from several domains.
arXiv Detail & Related papers (2024-08-14T13:27:02Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - Symbolic Numeric Planning with Patterns [1.450144681559089]
We encode the problem of finding a plan for $Pi$ with bound $n$ as a formula with fewer variables and/or clauses than the state-of-the-art rolled-up and relaxed-relaxed-$exists$ encodings.
We show that our planner Patty has remarkably good comparative performances on this year's International Planning Competition.
arXiv Detail & Related papers (2023-12-15T17:20:25Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - Probabilistic Planning with Partially Ordered Preferences over Temporal
Goals [22.77805882908817]
We study planning in Markov decision processes (MDPs) with preferences over temporally extended goals.
We introduce a variant of deterministic finite automaton, referred to as a preference DFA, for specifying the user's preferences over temporally extended goals.
We prove that a weak-stochastic nondominated policy given the preference specification is optimal in the constructed multi-objective MDP.
arXiv Detail & Related papers (2022-09-25T17:13:24Z) - Gradient-Based Mixed Planning with Discrete and Continuous Actions [34.885999774739055]
We propose a quadratic-based framework to simultaneously optimize continuous parameters and actions of candidate plans.
The framework is combined with a module to estimate the best plan candidate to transit initial state to the goal based on relaxation.
arXiv Detail & Related papers (2021-10-19T14:21:19Z) - STRIPS Action Discovery [67.73368413278631]
Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing.
We propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown.
arXiv Detail & Related papers (2020-01-30T17:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.