STRIPS Action Discovery
- URL: http://arxiv.org/abs/2001.11457v3
- Date: Fri, 5 Mar 2021 10:37:52 GMT
- Title: STRIPS Action Discovery
- Authors: Alejandro Su\'arez-Hern\'andez and Javier Segovia-Aguas and Carme
Torras and Guillem Aleny\`a
- Abstract summary: Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing.
We propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown.
- Score: 67.73368413278631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of specifying high-level knowledge bases for planning becomes a
hard task in realistic environments. This knowledge is usually handcrafted and
is hard to keep updated, even for system experts. Recent approaches have shown
the success of classical planning at synthesizing action models even when all
intermediate states are missing. These approaches can synthesize action schemas
in Planning Domain Definition Language (PDDL) from a set of execution traces
each consisting, at least, of an initial and final state. In this paper, we
propose a new algorithm to unsupervisedly synthesize STRIPS action models with
a classical planner when action signatures are unknown. In addition, we
contribute with a compilation to classical planning that mitigates the problem
of learning static predicates in the action model preconditions, exploits the
capabilities of SAT planners with parallel encodings to compute action schemas
and validate all instances. Our system is flexible in that it supports the
inclusion of partial input information that may speed up the search. We show
through several experiments how learned action models generalize over unseen
planning instances.
Related papers
- Safe Learning of PDDL Domains with Conditional Effects -- Extended Version [27.05167679870857]
We show that Conditional-SAM can be used to solve perfectly most of the test set problems in most of the experimented domains.
Our results show that the action models learned by Conditional-SAM can be used to solve perfectly most of the test set problems.
arXiv Detail & Related papers (2024-03-22T14:49:49Z) - PARADISE: Evaluating Implicit Planning Skills of Language Models with Procedural Warnings and Tips Dataset [0.0]
We present PARADISE, an abductive reasoning task using Q&A format on practical procedural text sourced from wikiHow.
It involves warning and tip inference tasks directly associated with goals, excluding intermediary steps, with the aim of testing the ability of the models to infer implicit knowledge of the plan solely from the given goal.
Our experiments, utilizing fine-tuned language models and zero-shot prompting, reveal the effectiveness of task-specific small models over large language models in most scenarios.
arXiv Detail & Related papers (2024-03-05T18:01:59Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Skip-Plan: Procedure Planning in Instructional Videos via Condensed
Action Space Learning [85.84504287685884]
Skip-Plan is a condensed action space learning method for procedure planning in instructional videos.
By skipping uncertain nodes and edges in action chains, we transfer long and complex sequence functions into short but reliable ones.
Our model explores all sorts of reliable sub-relations within an action sequence in the condensed action space.
arXiv Detail & Related papers (2023-10-01T08:02:33Z) - Lifted Sequential Planning with Lazy Constraint Generation Solvers [28.405198103927955]
This paper studies the possibilities made open by the use of Lazy Clause Generation (LCG) based approaches to Constraint Programming (CP)
We propose a novel CP model based on seminal ideas on so-called lifted causal encodings for planning as satisfiability.
We report that for planning problem instances requiring fewer plan steps our methods compare very well with the state-of-the-art in optimal sequential planning.
arXiv Detail & Related papers (2023-07-17T04:54:58Z) - PlaSma: Making Small Language Models Better Procedural Knowledge Models for (Counterfactual) Planning [77.03847056008598]
PlaSma is a novel two-pronged approach to endow small language models with procedural knowledge and (constrained) language planning capabilities.
We develop symbolic procedural knowledge distillation to enhance the commonsense knowledge in small language models and an inference-time algorithm to facilitate more structured and accurate reasoning.
arXiv Detail & Related papers (2023-05-31T00:55:40Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
We propose to use reinforcement learning to identify subgoals in expert trajectories.
We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning.
In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art.
arXiv Detail & Related papers (2023-01-30T15:04:39Z) - Position Paper: Online Modeling for Offline Planning [2.8326418377665346]
A key part of AI planning research is the representation of action models.
Despite the maturity of the field, AI planning technology is still rarely used outside the research community.
We argue that this is because the modeling process is assumed to have taken place and completed prior to the planning process.
arXiv Detail & Related papers (2022-06-07T14:48:08Z) - Deliberative Acting, Online Planning and Learning with Hierarchical
Operational Models [5.597986898418404]
In AI research, a plan of action has typically used descriptive models of the actions that abstractly specify what might happen as a result of an action.
executing the planned actions has needed operational models, in which rich computational control structures and closed-loop online decision-making are used.
We implement an integrated acting and planning system in which both planning and acting use the same operational models.
arXiv Detail & Related papers (2020-10-02T14:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.