論文の概要: Towards Practicable Sequential Shift Detectors
- arxiv url: http://arxiv.org/abs/2307.14758v1
- Date: Thu, 27 Jul 2023 10:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 14:50:41.640538
- Title: Towards Practicable Sequential Shift Detectors
- Title(参考訳): 逐次シフト検出器の実用化に向けて
- Authors: Oliver Cobb and Arnaud Van Looveren
- Abstract要約: 関連するコストが蓄積される前に、分配シフトを検出することへの関心が高まっている。
シーケンシャルシフト検出器の展開において重要なデシラタは、通常、既存の研究によって見過ごされる。
3つのデシダータを識別し、その満足度に関連する既存の作品を強調し、将来の研究に影響を及ぼす方向を推奨する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing awareness of the harmful effects of distribution shift on
the performance of deployed machine learning models. Consequently, there is a
growing interest in detecting these shifts before associated costs have time to
accumulate. However, desiderata of crucial importance to the practicable
deployment of sequential shift detectors are typically overlooked by existing
works, precluding their widespread adoption. We identify three such desiderata,
highlight existing works relevant to their satisfaction, and recommend
impactful directions for future research.
- Abstract(参考訳): デプロイされた機械学習モデルの性能に対する分散シフトの有害な影響に対する認識が増大している。
その結果、関連するコストが蓄積される前にこれらの変化を検出することへの関心が高まっている。
しかし、シーケンシャルシフト検出器の実用的展開において重要なデシデラタは、一般的に既存の作業で見過ごされ、広く採用されることを妨げている。
3つのデシダータを識別し、その満足度に関連する既存の作品を強調し、将来の研究に影響を及ぼす方向を推奨する。
関連論文リスト
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Instantaneous Perception of Moving Objects in 3D [86.38144604783207]
周囲の交通参加者の3次元運動の認識は、運転安全に不可欠である。
本研究では,物体点雲の局所的な占有率の達成を利用して形状を密度化し,水泳人工物の影響を軽減することを提案する。
広汎な実験は、標準的な3次元運動推定手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-05T01:07:24Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Detection Latencies of Anomaly Detectors: An Overlooked Perspective ? [1.8492669447784602]
本稿では,攻撃とエラーの時間的遅延を測定することの関連性について論じる。
本稿では,検知器の評価手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T10:52:39Z) - Usage of specific attention improves change point detection [1.0723143072368782]
本研究では,変化点検出タスクに対する異なる注意点と,その課題に関連する特定の注意形態を提案する。
注意の特殊な形態を用いることで、最先端の成果よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-04-18T06:05:50Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
すべてのセンサの継続的な監視は、リソースの制約のためにコストがかかる可能性がある。
有限パラメータ化確率分布の一般クラスに対する検出遅延に基づく情報理論の下界を導出する。
本稿では,異なる検知オプションの探索と質問行動の活用をシームレスに両立させる,計算効率のよいオンラインセンシング手法を提案する。
論文 参考訳(メタデータ) (2021-07-22T07:25:35Z) - Predicting Driver Takeover Time in Conditionally Automated Driving [14.861880139643942]
安全な乗っ取り遷移を定量化する重要な要因の1つは、乗っ取り時間である。
以前の研究では、テイクオーバリードタイム、非運転タスク、テイクオーバリクエスト(TOR)のモダリティ、シナリオ緊急性など、多くの要因がテイクオーバ時間に与える影響が特定された。
メタ分析によるデータセットを用いて,eXtreme Gradient Boostingを用いてテイクオーバー時間の予測を行った。
論文 参考訳(メタデータ) (2021-07-20T15:01:49Z) - Uncertainty-Aware Vehicle Orientation Estimation for Joint
Detection-Prediction Models [12.56249869551208]
オリエンテーションは、自律システムの下流モジュールにとって重要な特性である。
本稿では,既存のモデルを拡張し,共同物体検出と動き予測を行う手法を提案する。
さらに、この手法は予測の不確かさを定量化することができ、推定された向きが反転する確率を出力することができる。
論文 参考訳(メタデータ) (2020-11-05T21:59:44Z) - Fighting Copycat Agents in Behavioral Cloning from Observation Histories [85.404120663644]
模倣学習は、入力観察から専門家が選択したアクションにマップするポリシーを訓練する。
本稿では,従来の専門家の行動ニュアンスに関する過剰な情報を除去する特徴表現を学習するための敵対的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-28T10:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。