論文の概要: Improving Aspect-Based Sentiment with End-to-End Semantic Role Labeling
Model
- arxiv url: http://arxiv.org/abs/2307.14785v1
- Date: Thu, 27 Jul 2023 11:28:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 14:40:08.411229
- Title: Improving Aspect-Based Sentiment with End-to-End Semantic Role Labeling
Model
- Title(参考訳): エンド・ツー・エンドのセマンティクスロールラベリングモデルによるアスペクトベースの感情改善
- Authors: Pavel P\v{r}ib\'a\v{n} and Ond\v{r}ej Pra\v{z}\'ak
- Abstract要約: 本稿では,Aspect-Based Sentiment Analysis(ABSA)の性能向上を目的とした一連のアプローチを提案する。
本稿では,トランスフォーマーの隠蔽状態における構造的意味情報の大部分を効果的にキャプチャする,エンドツーエンドのセマンティックロールラベルモデルを提案する。
ELECTRA小モデルを用いて,提案したモデルを英語とチェコ語で評価した。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a series of approaches aimed at enhancing the performance
of Aspect-Based Sentiment Analysis (ABSA) by utilizing extracted semantic
information from a Semantic Role Labeling (SRL) model. We propose a novel
end-to-end Semantic Role Labeling model that effectively captures most of the
structured semantic information within the Transformer hidden state. We believe
that this end-to-end model is well-suited for our newly proposed models that
incorporate semantic information. We evaluate the proposed models in two
languages, English and Czech, employing ELECTRA-small models. Our combined
models improve ABSA performance in both languages. Moreover, we achieved new
state-of-the-art results on the Czech ABSA.
- Abstract(参考訳): 本稿では,意味的役割ラベル(SRL)モデルから抽出した意味情報を活用することにより,アスペクトベース感性分析(ABSA)の性能向上を目的とした一連のアプローチを提案する。
本稿では,トランスフォーマーの隠蔽状態における構造的意味情報の大部分を効果的にキャプチャする,エンドツーエンドのセマンティックロールラベルモデルを提案する。
このエンドツーエンドモデルは、セマンティック情報を組み込んだ新しいモデルに適していると考えています。
ELECTRA小モデルを用いて,提案したモデルを英語とチェコ語で評価した。
組み合わせたモデルにより、両言語でのABSA性能が向上する。
さらに,チェコのABSAで最先端の成果を得た。
関連論文リスト
- Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - Enhancing Modern Supervised Word Sense Disambiguation Models by Semantic
Lexical Resources [11.257738983764499]
現在、Word Sense Disambiguation (WSD) の監視モデルは、最も人気のあるベンチマークで最先端の結果をもたらす。
我々は、WordNetとWordNet Domainsという2つの人気のあるSLRを利用する「モダンな」教師付きWSDモデルを強化する。
本研究では,単語埋め込みやリカレントニューラルネットワークの混合によって符号化された局所的文脈との相互作用について,異なるタイプの意味的特徴の影響について検討する。
論文 参考訳(メタデータ) (2024-02-20T13:47:51Z) - A Quantitative Approach to Understand Self-Supervised Models as
Cross-lingual Feature Extractors [9.279391026742658]
特徴抽出器としてのモデルの性能に及ぼすモデルサイズ,トレーニング目標,モデルアーキテクチャの影響を解析する。
我々は,抽出した表現の音声情報と合成情報を測定するために,音声合成比(PSR)という新しい尺度を開発した。
論文 参考訳(メタデータ) (2023-11-27T15:58:28Z) - Unsupervised Lexical Simplification with Context Augmentation [55.318201742039]
対象単語とその文脈が与えられた場合、対象コンテキストと単言語データからサンプル化した追加コンテキストに基づいて置換語を生成する。
我々は、TSAR-2022共有タスクにおいて、英語、ポルトガル語、スペイン語で実験を行い、我々のモデルは、すべての言語で、他の教師なしシステムよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-11-01T05:48:05Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Entity-Assisted Language Models for Identifying Check-worthy Sentences [23.792877053142636]
テキスト分類とランキングのための統一的なフレームワークを提案する。
本フレームワークは,文の意味的分析と,文内の識別されたエンティティから得られる追加のエンティティ埋め込みを組み合わせる。
CLEFの2019年と2020年のCheckThat! Labsから公開されている2つのデータセットを使用して、我々のフレームワークの有効性を広く評価する。
論文 参考訳(メタデータ) (2022-11-19T12:03:30Z) - Incorporating Dynamic Semantics into Pre-Trained Language Model for
Aspect-based Sentiment Analysis [67.41078214475341]
ABSAの動的アスペクト指向セマンティクスを学ぶために,DR-BERT(Dynamic Re-weighting BERT)を提案する。
具体的には、まずStack-BERT層を主エンコーダとして、文の全体的な意味を理解する。
次に、軽量な動的再重み付けアダプタ(DRA)を導入して微調整する。
論文 参考訳(メタデータ) (2022-03-30T14:48:46Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
目的語抽出のためのディープラーニングモデルに文の構文構造を組み込むことを提案する。
また,ディープラーニングモデルの性能向上のために,新たな正規化手法を導入する。
提案モデルは,4つのベンチマークデータセット上での最先端性能を広範囲に解析し,達成する。
論文 参考訳(メタデータ) (2020-10-26T07:13:17Z) - Comparative Study of Language Models on Cross-Domain Data with Model
Agnostic Explainability [0.0]
この研究は、最先端の言語モデルであるBERT、ELECTRAとその派生品であるRoBERTa、ALBERT、DistilBERTを比較した。
実験結果は、2013年の格付けタスクとフィナンシャル・フレーズバンクの感情検出タスクの69%、そして88.2%の精度で、新たな最先端の「評価タスク」を確立した。
論文 参考訳(メタデータ) (2020-09-09T04:31:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。