論文の概要: Base-based Model Checking for Multi-Agent Only Believing (long version)
- arxiv url: http://arxiv.org/abs/2307.14893v1
- Date: Thu, 27 Jul 2023 14:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 14:21:32.386407
- Title: Base-based Model Checking for Multi-Agent Only Believing (long version)
- Title(参考訳): マルチエージェントのみを信頼するベースベースモデルチェック(ロングバージョン)
- Authors: Tiago de Lima, Emiliano Lorini and Fran\c{c}ois Schwarzentruber
- Abstract要約: 本稿では,信仰基盤の活用のみを前提としたマルチエージェント言語に関する新しい意味論を提案する。
本稿では,この言語の公式を自動的にチェックし,その動的拡張を私的信念拡張演算子で行う方法について述べる。
- 参考スコア(独自算出の注目度): 9.204324119167696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel semantics for the language of multi-agent only believing
exploiting belief bases, and show how to use it for automatically checking
formulas of this language and of its dynamic extension with private belief
expansion operators. We provide a PSPACE algorithm for model checking relying
on a reduction to QBF and alternative dedicated algorithm relying on the
exploration of the state space. We present an implementation of the QBF-based
algorithm and some experimental results on computation time in a concrete
example.
- Abstract(参考訳): 本稿では,信仰基盤の活用を前提としたマルチエージェント言語に関する新しいセマンティクスを提案し,この言語の公式と,その動的拡張を私的信念拡張演算子で自動的にチェックする方法を示す。
本稿では,QBFの削減に依存するモデル検査のためのPSPACEアルゴリズムと,状態空間の探索に依存する専用アルゴリズムを提案する。
本稿では,QBFに基づくアルゴリズムの実装と実例による計算時間に関する実験結果について述べる。
関連論文リスト
- Adaptive Gating in Mixture-of-Experts based Language Models [7.936874532105228]
モデルスケーリングのための有望なソリューションとして,Sparsely activated mixed-of-experts (MoE) が登場した。
本稿では,様々な専門家がトークンを処理できるフレキシブルなトレーニング戦略であるMoEで適応ゲーティングを導入する。
論文 参考訳(メタデータ) (2023-10-11T04:30:18Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
言語モデル(LM)に対する主要な批判は、その調査性である。
本稿では,その大きさと複雑さにもかかわらず,LMは単純なベクトル演算方式を用いて,いくつかのリレーショナルタスクを解くことの証拠を提示する。
論文 参考訳(メタデータ) (2023-05-25T15:04:01Z) - A Data-Driven State Aggregation Approach for Dynamic Discrete Choice
Models [7.7347261505610865]
本稿では,状態の選択と集約のためのデータ駆動型手法を提案する。
提案した2段階のアプローチは,問題次元を減らして次元の呪いを緩和する。
2つの古典的動的離散的選択推定法におけるアルゴリズムの実証的性能を実証する。
論文 参考訳(メタデータ) (2023-04-11T01:07:24Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
現代のロボティクスは、共有環境内で複数のエンボディエージェントを動作させることが多い。
標準的なサンプリングベースのアルゴリズムは、ロボットの関節空間における解の探索に使用できる。
我々は、因子化の概念をサンプリングベースアルゴリズムに統合し、既存の手法への最小限の変更しか必要としない。
本稿では, PRM* のサンプル複雑性の観点から解析的ゲインを導出し, RRG の実証結果を示す。
論文 参考訳(メタデータ) (2023-04-01T15:50:18Z) - DeciLS-PBO: an Effective Local Search Method for Pseudo-Boolean
Optimization [10.513103815142731]
PBO(Pseudo-Boolean Optimization)の解法における局所探索アルゴリズムの改良法について検討する。
我々のアルゴリズムであるDeciLS-PBOは最先端のアルゴリズムと比較して有望な性能を持つ。
論文 参考訳(メタデータ) (2023-01-28T17:03:56Z) - Space-Efficient Representation of Entity-centric Query Language Models [8.712427362992237]
モデル生成時の非項の明示的な拡張を回避するため,確率文法に決定論的近似を導入する。
また、同じ大きさのn-gramモデルを用いた場合と比較して、長テールエンティティクエリの単語誤り率を10%改善する。
論文 参考訳(メタデータ) (2022-06-29T19:59:50Z) - MQBench: Towards Reproducible and Deployable Model Quantization
Benchmark [53.12623958951738]
MQBenchは、モデル量子化アルゴリズムの評価、分析、およびデプロイ可能性のベンチマークを行う最初の試みである。
我々は、CPU、GPU、ASIC、DSPを含む実世界のデプロイのための複数のプラットフォームを選択し、最先端の量子化アルゴリズムを評価する。
包括的な分析を行い、直感的、直感的、あるいは反直感的な洞察を見出す。
論文 参考訳(メタデータ) (2021-11-05T23:38:44Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。