論文の概要: PanGu-Coder2: Boosting Large Language Models for Code with Ranking
Feedback
- arxiv url: http://arxiv.org/abs/2307.14936v1
- Date: Thu, 27 Jul 2023 15:28:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 14:00:42.509465
- Title: PanGu-Coder2: Boosting Large Language Models for Code with Ranking
Feedback
- Title(参考訳): pangu-coder2: ランキングフィードバックによるコード用大規模言語モデルの拡張
- Authors: Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu,
Muhan Zeng, Ailun Yu, Jichuan Ji, Jingyang Zhao, Yuenan Guo, Qianxiang Wang
- Abstract要約: 本稿では,コード生成のための事前学習された大規模言語モデルを効果的かつ効率的に向上するRRTF(Rank Responses toaligned Test&Teacher Feedback)フレームワークを提案する。
このフレームワークでは、OpenAI HumanEvalベンチマークで62.20%パス@1を達成したPanGu-Coder2を紹介します。
- 参考スコア(独自算出の注目度): 5.459517921633247
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models for Code (Code LLM) are flourishing. New and powerful
models are released on a weekly basis, demonstrating remarkable performance on
the code generation task. Various approaches have been proposed to boost the
code generation performance of pre-trained Code LLMs, such as supervised
fine-tuning, instruction tuning, reinforcement learning, etc. In this paper, we
propose a novel RRTF (Rank Responses to align Test&Teacher Feedback) framework,
which can effectively and efficiently boost pre-trained large language models
for code generation. Under this framework, we present PanGu-Coder2, which
achieves 62.20% pass@1 on the OpenAI HumanEval benchmark. Furthermore, through
an extensive evaluation on CoderEval and LeetCode benchmarks, we show that
PanGu-Coder2 consistently outperforms all previous Code LLMs.
- Abstract(参考訳): コードのための大規模言語モデル(Code LLM)が盛んである。
新しい強力なモデルが毎週リリースされ、コード生成タスクで顕著なパフォーマンスを示している。
教師付き微調整, 指導チューニング, 強化学習など, 事前訓練済みのコードLLMのコード生成性能を向上させるための様々な手法が提案されている。
本稿では,コード生成のための事前学習された大規模言語モデルを効果的かつ効率的に向上するRRTF(Rank Responses toaligned Test&Teacher Feedback)フレームワークを提案する。
このフレームワークでは、OpenAI HumanEvalベンチマークで62.20%パス@1を達成したPanGu-Coder2を紹介します。
さらに、CoderEvalとLeetCodeベンチマークの広範な評価により、PanGu-Coder2が以前のすべてのCode LLMより一貫して優れていることを示す。
関連論文リスト
- Rethinking Code Refinement: Learning to Judge Code Efficiency [60.04718679054704]
大規模言語モデル(LLM)は、コードを理解して生成する素晴らしい能力を示しています。
本稿では,2つの異なる符号間の効率を判定するために訓練されたコード言語モデルに基づく新しい手法を提案する。
提案手法は,複数の改良ステップで複数のプログラミング言語に対して検証し,より効率的で少ないバージョンのコードの識別を効果的に行うことができることを示した。
論文 参考訳(メタデータ) (2024-10-29T06:17:37Z) - DolphCoder: Echo-Locating Code Large Language Models with Diverse and
Multi-Objective Instruction Tuning [36.78560777629329]
コード生成を自己評価する多種多様な命令モデル(DolphCoder)を導入する。
多様な命令ターゲットを学習し、コード生成能力を高めるためにコード評価の目的を組み合わせる。
本モデルは,HumanEvalおよびMBPPベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-14T12:34:58Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - JumpCoder: Go Beyond Autoregressive Coder via Online Modification [18.9350072969148]
JumpCoderは、人間に似たオンライン修正と非逐次生成が可能な新しいモデルに依存しないフレームワークで、LLMを増強する。
JumpCoderの背景にある重要なアイデアは、生成時に必要に応じて、現在生成されたコードに新しいコードを挿入することである。
論文 参考訳(メタデータ) (2024-01-15T18:04:29Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - Exploring Continual Learning for Code Generation Models [80.78036093054855]
継続的学習(CL)は、コードドメインの中でまだ過小評価されていない重要な側面である。
コード生成,翻訳,要約,改良など,幅広いタスクをカバーするCodeTask-CLというベンチマークを導入する。
即時選択機構の不安定な訓練により,プロンプトプール (PP) などの有効手法が破滅的な忘れ込みに悩まされることが判明した。
論文 参考訳(メタデータ) (2023-07-05T16:58:39Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - Stochastic Code Generation [1.7205106391379026]
コード生成のために事前訓練された大きな言語モデルは、高品質のショートコードを生成するが、コヒーレントな長いコードを生成するのにしばしば苦労する。
この問題は、長文生成のための言語モデリングにも見られる。
本研究では,この手法をコード生成に適用してコヒーレンスを向上できるかを検討する。
論文 参考訳(メタデータ) (2023-04-14T00:01:05Z) - Better Language Models of Code through Self-Improvement [18.75015225501755]
コードのための事前学習言語モデル(PLMC)のための単純なデータ拡張フレームワークを提案する。
本フレームワークは,事前学習と微調整の段階で得られた知識を利用して擬似データを生成し,次のステップのトレーニングデータとして利用する。
その結果,コード関連シーケンス生成タスクにおいて,PLMCの性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2023-04-02T10:59:19Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
関数レベルのコードセマンティック表現を訓練するために,一様および二様のコントラスト学習を組み合わせたCodeRetrieverモデルを提案する。
ノンモーダルなコントラスト学習のために、文書と関数名に基づいてポジティブなコードペアを構築するためのセマンティックガイド付き手法を設計する。
バイモーダルなコントラスト学習では、コードのドキュメンテーションとインラインコメントを活用して、テキストコードペアを構築します。
論文 参考訳(メタデータ) (2022-01-26T10:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。