Two-dimensional optomechanical crystal resonator in gallium arsenide
- URL: http://arxiv.org/abs/2307.15087v1
- Date: Wed, 26 Jul 2023 19:05:56 GMT
- Title: Two-dimensional optomechanical crystal resonator in gallium arsenide
- Authors: Rhys G. Povey, Ming-Han Chou, Gustav Andersson, Christopher R. Conner,
Joel Grebel, Yash J. Joshi, Jacob M. Miller, Hong Qiao, Xuntao Wu, Haoxiong
Yan, Andrew N. Cleland
- Abstract summary: A promising platform for this is an optomechanical crystal resonator.
We adapt this design to gallium arsenide, a natural thin-film single-crystal piezoelectric.
- Score: 5.523034730355238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of quantum computation and communication there is a compelling
need for quantum-coherent frequency conversion between microwave electronics
and infra-red optics. A promising platform for this is an optomechanical
crystal resonator that uses simultaneous photonic and phononic crystals to
create a co-localized cavity coupling an electromagnetic mode to an acoustic
mode, which then via electromechanical interactions can undergo direct
transduction to electronics. The majority of work in this area has been on
one-dimensional nanobeam resonators which provide strong optomechanical
couplings but, due to their geometry, suffer from an inability to dissipate
heat produced by the laser pumping required for operation. Recently, a
quasi-two-dimensional optomechanical crystal cavity was developed in silicon
exhibiting similarly strong coupling with better thermalization, but at a
mechanical frequency above optimal qubit operating frequencies. Here we adapt
this design to gallium arsenide, a natural thin-film single-crystal
piezoelectric that can incorporate electromechanical interactions, obtaining a
mechanical resonant mode at f_m ~ 4.5 GHz ideal for superconducting qubits, and
demonstrating optomechanical coupling g_om/(2pi) ~ 650 kHz.
Related papers
- Phononic Crystals in Superfluid Thin-Film Helium [49.1574468325115]
Mechanical excitations in superfluid thin films interact with the optical mode of an optical microresonator by modulation of its effective refractive index.
We realize a phononic crystal cavity confining third sound modes in a superfluid helium film to length scales close to the third sound wavelength.
arXiv Detail & Related papers (2024-02-28T11:45:35Z) - Bidirectional microwave-optical transduction based on integration of
high-overtone bulk acoustic resonators and photonic circuits [8.119789403079455]
Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing.
We present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators atop silicon nitride photonic circuits.
arXiv Detail & Related papers (2023-08-04T20:47:52Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Simultaneous Brillouin and piezoelectric coupling to high-frequency bulk
acoustic resonator [2.031688729582683]
We present a novel hybrid microwave/optical platform capable of coupling to bulk acoustic waves through cavity-enhanced piezoelectric and photoelastic interactions.
The modular, tunable system achieves fully resonant and well-mode-matched interactions between a 3D microwave cavity, a high-frequency bulk acoustic resonator, and a Fabry Perot cavity.
arXiv Detail & Related papers (2022-08-12T18:48:35Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Microwave-to-optical conversion with a gallium phosphide photonic
crystal cavity [0.0]
We present a novel platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits.
We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of $sim$ 200 kHz.
arXiv Detail & Related papers (2021-05-27T15:40:14Z) - Stationary quantum entanglement between a massive mechanical membrane
and a low frequency LC circuit [10.128856077021625]
We study electro-mechanical entanglement in a system where a massive membrane is capacitively coupled to a it low frequency LC resonator.
In opto- and electro-mechanics, the entanglement between a megahertz (MHz) mechanical resonator and a gigahertz (GHz) microwave LC resonator has been widely and well explored.
arXiv Detail & Related papers (2020-02-09T11:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.