Phononic Crystals in Superfluid Thin-Film Helium
- URL: http://arxiv.org/abs/2402.18259v1
- Date: Wed, 28 Feb 2024 11:45:35 GMT
- Title: Phononic Crystals in Superfluid Thin-Film Helium
- Authors: Alexander Rolf Korsch, Niccol\`o Fiaschi, Simon Gr\"oblacher
- Abstract summary: Mechanical excitations in superfluid thin films interact with the optical mode of an optical microresonator by modulation of its effective refractive index.
We realize a phononic crystal cavity confining third sound modes in a superfluid helium film to length scales close to the third sound wavelength.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, nanomechanical oscillators in thin films of superfluid
helium have attracted attention in the field of optomechanics due to their
exceptionally low mechanical dissipation and optical scattering. Mechanical
excitations in superfluid thin films - so-called third sound waves - can
interact with the optical mode of an optical microresonator by modulation of
its effective refractive index enabling optomechanical coupling. Strong
confinement of third sound modes enhances their intrinsic mechanical
non-linearity paving the way for strong phonon-phonon interactions with
applications in quantum optomechanics. Here, we realize a phononic crystal
cavity confining third sound modes in a superfluid helium film to length scales
close to the third sound wavelength. A few nanometer thick superfluid film is
self-assembled on top of a silicon nanobeam optical resonator. The periodic
patterning of the silicon material creates a periodic modulation of the
superfluid film leading to the formation of a phononic band gap. By engineering
the geometry of the silicon nanobeam, the phononic band gap allows the
confinement of a localized phononic mode.
Related papers
- Long-range optomechanical interactions in SiN membrane arrays [3.8864394300826346]
Optomechanical systems using a membrane-in-the-middle configuration can exhibit a long-range type of interaction.
Long-range interactions involving the breathing mode of the membranes have to date not been experimentally demonstrated.
arXiv Detail & Related papers (2024-08-06T09:38:35Z) - Nanomechanical crystalline AlN resonators with high quality factors for
quantum optoelectromechanics [38.12258102043167]
Tensile strain in the material enables the use of dissipation dilution and strain engineering techniques, which increase the mechanical quality factor.
We demonstrate nanomechanical resonators that exploit dissipation dilution and strain engineering to reach a $Q_m times f_m$-product approaching $1013$ Hz at room temperature.
arXiv Detail & Related papers (2024-02-19T15:00:51Z) - Room-temperature quantum optomechanics using an ultra-low noise cavity [0.0]
We demonstrate optomechanical squeezing at room temperature in a phononic-engineered membrane-in-the-middle system.
By using a high finesse cavity whose mirrors are patterned with phononic crystal structures, we reduce cavity frequency noise by more than 700-fold.
These advances enable operation within a factor of 2.5 of the Heisenberg limit, leading to squeezing of the probing field by 1.09 dB below the vacuum fluctuations.
arXiv Detail & Related papers (2023-09-26T16:27:32Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Heterogeneous integration of superconducting thin films and epitaxial
semiconductor heterostructures with Lithium Niobate [0.0]
We report on scalable heterointegration of superconducting electrodes and epitaxial semiconductor quantum dots on strong piezoelectric and optically nonlinear lithium niobate.
The employed materials allow for the realization of other types of optoelectronic devices, including superconducting single photon detectors and integrated photonic and phononic circuits.
arXiv Detail & Related papers (2023-02-06T11:39:41Z) - Direct laser-written optomechanical membranes in fiber Fabry-Perot
cavities [41.94295877935867]
We demonstrate a cavity optomechanical experiment using 3D-laser-written polymer membranes inside fiber Fabry-Perot cavities.
We observe optomechanical spring tuning of the mechanical resonator by tens of kHz exceeding its linewidth at cryogenic temperatures.
arXiv Detail & Related papers (2022-12-27T16:02:03Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Giant optomechanical spring effect in plasmonic nano- and picocavities
probed by surface-enhanced Raman scattering [8.713553888457293]
Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics.
We show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling.
arXiv Detail & Related papers (2022-04-20T17:35:26Z) - Enhanced Cavity Optomechanics with Quantum-well Exciton Polaritons [0.0]
microresonators embed quantum wells can host excitonic, optical and mechanical modes at once.
We investigate the case where the system operates in the strong exciton-photon coupling regime.
We predict an enhancement of polariton-phonon interactions by two orders of magnitude with respect to mere optomechanical coupling.
arXiv Detail & Related papers (2022-02-24T13:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.