A Critical Review of Large Language Models: Sensitivity, Bias, and the
Path Toward Specialized AI
- URL: http://arxiv.org/abs/2307.15425v1
- Date: Fri, 28 Jul 2023 09:20:22 GMT
- Title: A Critical Review of Large Language Models: Sensitivity, Bias, and the
Path Toward Specialized AI
- Authors: Arash Hajikhani, Carolyn Cole
- Abstract summary: This paper examines the comparative effectiveness of a specialized compiled language model and a general-purpose model like OpenAI's GPT-3.5 in detecting SDGs within text data.
The study concludes by encouraging further research to find a balance between the capabilities of LLMs and the need for domain-specific expertise and interpretability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper examines the comparative effectiveness of a specialized compiled
language model and a general-purpose model like OpenAI's GPT-3.5 in detecting
SDGs within text data. It presents a critical review of Large Language Models
(LLMs), addressing challenges related to bias and sensitivity. The necessity of
specialized training for precise, unbiased analysis is underlined. A case study
using a company descriptions dataset offers insight into the differences
between the GPT-3.5 and the specialized SDG detection model. While GPT-3.5
boasts broader coverage, it may identify SDGs with limited relevance to the
companies' activities. In contrast, the specialized model zeroes in on highly
pertinent SDGs. The importance of thoughtful model selection is emphasized,
taking into account task requirements, cost, complexity, and transparency.
Despite the versatility of LLMs, the use of specialized models is suggested for
tasks demanding precision and accuracy. The study concludes by encouraging
further research to find a balance between the capabilities of LLMs and the
need for domain-specific expertise and interpretability.
Related papers
- Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
This paper explores the feasibility of employing smaller, domain-specific encoder LMs alongside prompting techniques to enhance performance in specialized contexts.
Our study concentrates on the Italian bureaucratic and legal language, experimenting with both general-purpose and further pre-trained encoder-only models.
The results indicate that while further pre-trained models may show diminished robustness in general knowledge, they exhibit superior adaptability for domain-specific tasks, even in a zero-shot setting.
arXiv Detail & Related papers (2024-07-30T08:50:16Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Exploring the Potential of the Large Language Models (LLMs) in Identifying Misleading News Headlines [2.0330684186105805]
This study explores the efficacy of Large Language Models (LLMs) in identifying misleading versus non-misleading news headlines.
Our analysis reveals significant variance in model performance, with ChatGPT-4 demonstrating superior accuracy.
arXiv Detail & Related papers (2024-05-06T04:06:45Z) - Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry [2.4244694855867275]
Large Language Models (LLMs) have emerged as powerful tools for extracting valuable insights from vast amounts of textual data.
In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor posts.
Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models.
arXiv Detail & Related papers (2024-04-27T18:28:10Z) - Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning [0.9787137564521711]
We show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately.
We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods.
arXiv Detail & Related papers (2024-04-16T03:39:16Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Black-Box Analysis: GPTs Across Time in Legal Textual Entailment Task [17.25356594832692]
We present an analysis of GPT-3.5 (ChatGPT) and GPT-4 performances on COLIEE Task 4 dataset.
Our preliminary experimental results unveil intriguing insights into the models' strengths and weaknesses in handling legal textual entailment tasks.
arXiv Detail & Related papers (2023-09-11T14:43:54Z) - Exploring the Trade-Offs: Unified Large Language Models vs Local
Fine-Tuned Models for Highly-Specific Radiology NLI Task [49.50140712943701]
We evaluate the performance of ChatGPT/GPT-4 on a radiology NLI task and compare it to other models fine-tuned specifically on task-related data samples.
We also conduct a comprehensive investigation on ChatGPT/GPT-4's reasoning ability by introducing varying levels of inference difficulty.
arXiv Detail & Related papers (2023-04-18T17:21:48Z) - Large Language Models in the Workplace: A Case Study on Prompt
Engineering for Job Type Classification [58.720142291102135]
This case study investigates the task of job classification in a real-world setting.
The goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position.
arXiv Detail & Related papers (2023-03-13T14:09:53Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.