Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect
Localization and Species Classification
- URL: http://arxiv.org/abs/2307.15427v1
- Date: Fri, 28 Jul 2023 09:22:09 GMT
- Title: Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect
Localization and Species Classification
- Authors: Dimitri Korsch, Paul Bodesheim, Joachim Denzler
- Abstract summary: We present a deep learning pipeline for analyzing images captured by a moth scanner.
We first localize individuals with a moth detector and afterward determine the species of detected insects.
Our detector achieves up to 99.01% mean average precision and our classifier distinguishes 200 moth species with an accuracy of 93.13% on image cutouts.
- Score: 10.423464288613275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biodiversity monitoring is crucial for tracking and counteracting adverse
trends in population fluctuations. However, automatic recognition systems are
rarely applied so far, and experts evaluate the generated data masses manually.
Especially the support of deep learning methods for visual monitoring is not
yet established in biodiversity research, compared to other areas like
advertising or entertainment. In this paper, we present a deep learning
pipeline for analyzing images captured by a moth scanner, an automated visual
monitoring system of moth species developed within the AMMOD project. We first
localize individuals with a moth detector and afterward determine the species
of detected insects with a classifier. Our detector achieves up to 99.01% mean
average precision and our classifier distinguishes 200 moth species with an
accuracy of 93.13% on image cutouts depicting single insects. Combining both in
our pipeline improves the accuracy for species identification in images of the
moth scanner from 79.62% to 88.05%.
Related papers
- A machine learning pipeline for automated insect monitoring [17.034158815607128]
Camera traps, conventionally used for monitoring terrestrial vertebrates, are now being modified for insects, especially moths.
We describe a complete, open-source machine learning-based software pipeline for automated monitoring of moths via camera traps.
arXiv Detail & Related papers (2024-06-18T19:51:16Z) - Low Cost Machine Vision for Insect Classification [33.7054351451505]
We present an imaging method as part of a multisensor system developed as a low-cost, scalable, open-source system.
The system is evaluated exemplarily on a dataset consisting of 16 insect species of the same as well as different genus, family and order.
It was proved that image cropping of insects is necessary for classification of species with high inter-class similarity.
arXiv Detail & Related papers (2024-04-26T15:43:24Z) - Automated Visual Monitoring of Nocturnal Insects with Light-based Camera
Traps [9.274371635733836]
We present two datasets of nocturnal insects, especially moths as a subset of Lepidoptera, photographed in Central Europe.
One dataset, the EU-Moths dataset, was captured manually by citizen scientists and contains species annotations for 200 different species.
The second dataset consists of more than 27,000 images captured on 95 nights.
arXiv Detail & Related papers (2023-07-28T09:31:36Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
In this work, we present a deep learning pipeline that can be used to precisely detect, count, and monitor waterbirds using aerial imagery collected by a commercial drone.
By utilizing convolutional neural network-based object detectors, we show that we can detect 16 classes of waterbird species that are commonly found in colonial nesting islands along the Texas coast.
arXiv Detail & Related papers (2022-10-10T17:37:56Z) - Active Gaze Control for Foveal Scene Exploration [124.11737060344052]
We propose a methodology to emulate how humans and robots with foveal cameras would explore a scene.
The proposed method achieves an increase in detection F1-score of 2-3 percentage points for the same number of gaze shifts.
arXiv Detail & Related papers (2022-08-24T14:59:28Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - LudVision -- Remote Detection of Exotic Invasive Aquatic Floral Species
using Drone-Mounted Multispectral Data [0.34998703934432673]
Ludwigia peploides is considered by the European Union as an aquatic invasive species.
Our goal was to develop a method to identify the presence of the species.
To identify the targeted species on the collected images, we propose a new method for detecting Ludwigia p.
arXiv Detail & Related papers (2022-07-12T15:43:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.