論文の概要: Cross-Modal Concept Learning and Inference for Vision-Language Models
- arxiv url: http://arxiv.org/abs/2307.15460v1
- Date: Fri, 28 Jul 2023 10:26:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 12:52:54.444024
- Title: Cross-Modal Concept Learning and Inference for Vision-Language Models
- Title(参考訳): 視覚言語モデルのクロスモーダル概念学習と推論
- Authors: Yi Zhang, Ce Zhang, Yushun Tang, Zhihai He
- Abstract要約: 既存の微調整法では、クラス固有のテキスト記述は画像全体と一致している。
我々は、クロスモデル概念学習と推論(CCLI)と呼ばれる新しい手法を開発した。
本手法は,意味テキストの集合を用いて画像から視覚的特徴の集合を自動的に学習する。
- 参考スコア(独自算出の注目度): 31.463771883036607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale pre-trained Vision-Language Models (VLMs), such as CLIP,
establish the correlation between texts and images, achieving remarkable
success on various downstream tasks with fine-tuning. In existing fine-tuning
methods, the class-specific text description is matched against the whole
image. We recognize that this whole image matching is not effective since
images from the same class often contain a set of different semantic objects,
and an object further consists of a set of semantic parts or concepts.
Individual semantic parts or concepts may appear in image samples from
different classes. To address this issue, in this paper, we develop a new
method called cross-model concept learning and inference (CCLI). Using the
powerful text-image correlation capability of CLIP, our method automatically
learns a large set of distinctive visual concepts from images using a set of
semantic text concepts. Based on these visual concepts, we construct a
discriminative representation of images and learn a concept inference network
to perform downstream image classification tasks, such as few-shot learning and
domain generalization. Extensive experimental results demonstrate that our CCLI
method is able to improve the performance upon the current state-of-the-art
methods by large margins, for example, by up to 8.0% improvement on few-shot
learning and by up to 1.3% for domain generalization.
- Abstract(参考訳): クリップなどの大規模事前学習された視覚言語モデル(vlms)は、テキストと画像の相関関係を確立し、微調整によって下流の様々なタスクで顕著な成功を収める。
既存の微調整メソッドでは、クラス固有のテキスト記述が画像全体にマッチする。
同一クラスの画像は、しばしば異なるセマンティックオブジェクトのセットを含み、オブジェクトはさらにセマンティックな部分や概念のセットで構成されているため、この全体マッチングは効果がないと認識する。
個々の意味部分や概念は、異なるクラスの画像サンプルに現れる。
この問題に対処するため,本稿では,クロスモデル概念学習・推論(ccli)と呼ばれる新しい手法を開発した。
提案手法は,CLIPの強力なテキスト画像相関機能を用いて,画像から特徴的視覚概念の集合を,意味的テキスト概念の集合を用いて自動的に学習する。
これらの視覚概念に基づき、画像の識別表現を構築し、概念推論ネットワークを学習し、少数ショット学習やドメイン一般化といった下流画像分類タスクを実行する。
広範な実験結果から,ccli法は,例えば,小数点学習における最大8.0%の改善や,最大1.3%のドメイン一般化によって,現在の最先端手法の性能を向上させることができることが示された。
関連論文リスト
- Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge [20.09852220432504]
Contrastive Language-Image Pretraining (CLIP)は画像とテキストのクラス表現を共有埋め込み空間にマッピングすることでゼロショット画像分類を行う。
この研究は、2つのモード間の相互知識のレンズから、画像分類のためのCLIPモデルを解釈するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-10-16T20:18:21Z) - Textual Localization: Decomposing Multi-concept Images for
Subject-Driven Text-to-Image Generation [5.107886283951882]
マルチコンセプト入力画像を扱うための局所化テキスト・ツー・イメージモデルを提案する。
提案手法は,複数概念を分解するための新しいクロスアテンションガイダンスを組み込んだものである。
特に,本手法は,生成した画像の目標概念と整合した横断アテンションマップを生成する。
論文 参考訳(メタデータ) (2024-02-15T14:19:42Z) - Enhancing Image Retrieval : A Comprehensive Study on Photo Search using
the CLIP Mode [0.27195102129095]
写真検索はCLIP(Contrastive Language- Image Pretraining)モデルの導入によって大きな進歩をみせた。
この要約は、CLIPの基本原理を要約し、写真検索の分野を前進させる可能性を強調している。
論文 参考訳(メタデータ) (2024-01-24T17:35:38Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
対照的に訓練された視覚言語モデルは、視覚と言語表現学習において顕著な進歩を遂げた。
近年の研究では、対象、属性、関係性に対して構成的推論を行う能力に厳しい制限が強調されている。
論文 参考訳(メタデータ) (2023-05-23T08:28:38Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
大規模な視覚言語による事前学習は、幅広い下流タスクにおいて顕著な進歩を見せている。
既存の手法は主に、画像とテキストのグローバルな表現の類似性によって、モーダル間のアライメントをモデル化する。
ゲーム理論的相互作用の新たな視点から, 微粒なセマンティックアライメントを学習する, 微粒なセマンティックなvisiOn-langUage PrEトレーニングフレームワークであるLOを導入する。
論文 参考訳(メタデータ) (2022-08-04T07:51:48Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
マルチモーダルデータを取り入れた視覚表現の学習手法を開発した。
本手法は,各モダリティおよびセマンティクス情報内の本質的なデータ特性をクロスモーダル相関から同時に利用する。
統合フレームワークにマルチモーダルトレーニングを組み込むことで,より強力で汎用的な視覚的特徴を学習することができる。
論文 参考訳(メタデータ) (2021-04-26T19:23:36Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
自己教師付き表現学習ターゲットは、ラベルなしデータから畳み込みに基づく画像表現を学習する。
この分野におけるNLP手法の成功に触発された本研究では,空間的に高密度な画像記述に基づく自己教師型アプローチを提案する。
論文 参考訳(メタデータ) (2020-02-27T16:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。