論文の概要: Scaling Data Generation in Vision-and-Language Navigation
- arxiv url: http://arxiv.org/abs/2307.15644v1
- Date: Fri, 28 Jul 2023 16:03:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 12:04:12.049160
- Title: Scaling Data Generation in Vision-and-Language Navigation
- Title(参考訳): 視覚・言語ナビゲーションにおけるデータ生成のスケーリング
- Authors: Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen
Gould, Hao Tan, Yu Qiao
- Abstract要約: 本稿では,学習のための大規模データ生成に有効なパラダイムを提案する。
我々は、HM3DとGibsonのデータセットから1200以上のフォトリアリスティック環境を適用し、490万の命令軌道対を合成する。
我々の大規模データセットのおかげで、既存のエージェントの性能は(以前のSoTAでは+11%絶対)、単純な模倣学習によってR2Rテストの分割で80%の単ラン成功率で大幅に向上できる。
- 参考スコア(独自算出の注目度): 116.95534559103788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in language-guided visual navigation has demonstrated a
significant demand for the diversity of traversable environments and the
quantity of supervision for training generalizable agents. To tackle the common
data scarcity issue in existing vision-and-language navigation datasets, we
propose an effective paradigm for generating large-scale data for learning,
which applies 1200+ photo-realistic environments from HM3D and Gibson datasets
and synthesizes 4.9 million instruction trajectory pairs using fully-accessible
resources on the web. Importantly, we investigate the influence of each
component in this paradigm on the agent's performance and study how to
adequately apply the augmented data to pre-train and fine-tune an agent. Thanks
to our large-scale dataset, the performance of an existing agent can be pushed
up (+11% absolute with regard to previous SoTA) to a significantly new best of
80% single-run success rate on the R2R test split by simple imitation learning.
The long-lasting generalization gap between navigating in seen and unseen
environments is also reduced to less than 1% (versus 8% in the previous best
method). Moreover, our paradigm also facilitates different models to achieve
new state-of-the-art navigation results on CVDN, REVERIE, and R2R in continuous
environments.
- Abstract(参考訳): 近年、言語誘導視覚ナビゲーションの研究により、トラバーサブル環境の多様性と一般化エージェントの訓練のための監督の量に対する大きな需要が示されている。
本稿では,HM3DとGibsonのデータセットから1200以上の写真リアル環境を適用し,Web上の完全アクセス可能なリソースを用いて490万の命令軌道対を合成する,大規模学習用データを生成するための効果的なパラダイムを提案する。
重要なことに,このパラダイムにおける各コンポーネントがエージェントの性能に及ぼす影響を調査し,エージェントの事前訓練と微調整に拡張データを適切に適用する方法を検討する。
我々の大規模データセットのおかげで、既存のエージェントの性能は(以前のSoTAでは+11%絶対)、単純な模倣学習によってR2Rテストの分割で80%の単ラン成功率で大幅に向上できる。
目視環境と目視環境の間の長期にわたる一般化のギャップも1%未満に縮める(以前のベストメソッドでは8%)。
さらに,本パラダイムは, CVDN, REVERIE, R2Rにおける新しい最先端ナビゲーション結果を実現するために, 連続環境において異なるモデルを容易にする。
関連論文リスト
- UdeerLID+: Integrating LiDAR, Image, and Relative Depth with Semi-Supervised [12.440461420762265]
道路分割は自動運転システムにとって重要な課題である。
我々の研究は、LiDARポイントクラウドデータ、ビジュアルイメージ、および相対深度マップを統合する革新的なアプローチを導入している。
主な課題の1つは、大規模で正確にラベル付けされたデータセットの不足である。
論文 参考訳(メタデータ) (2024-09-10T03:57:30Z) - CLIPping the Deception: Adapting Vision-Language Models for Universal
Deepfake Detection [3.849401956130233]
広汎な深度検出のための最近の適応手法と組み合わせた事前学習型視覚言語モデル(VLM)の有効性について検討する。
ディープフェイク検出にCLIPを適用するために、単一のデータセット(ProGAN)のみを使用します。
シンプルで軽量なPrompt Tuningベースの適応戦略は、以前のSOTAアプローチよりも5.01% mAPと6.61%の精度で優れている。
論文 参考訳(メタデータ) (2024-02-20T11:26:42Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - Replication: Contrastive Learning and Data Augmentation in Traffic
Classification Using a Flowpic Input Representation [47.95762911696397]
同じデータセット上で[16]を再現し、3つの追加の公開データセット上で最も健全なアスペクト(データ拡張の重要性)を複製します。
元の結果のほとんどを確認できたが、元のデータセットにデータシフトがあったため、調査されたシナリオの20%の精度低下が判明した。
論文 参考訳(メタデータ) (2023-09-18T12:55:09Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Masked Path Modeling for Vision-and-Language Navigation [41.7517631477082]
ヴィジュアル・アンド・ランゲージ・ナビゲーション(VLN)エージェントは、自然言語の指示に従うことで現実世界の環境をナビゲートするように訓練されている。
以前のアプローチでは、トレーニング中に追加の監督を導入することでこの問題に対処しようと試みていた。
本稿では,下流ナビゲーションタスクに自己コンパイルデータを用いてエージェントを事前訓練する,マスク付きパスモデリング(MPM)手法を提案する。
論文 参考訳(メタデータ) (2023-05-23T17:20:20Z) - A New Path: Scaling Vision-and-Language Navigation with Synthetic
Instructions and Imitation Learning [70.14372215250535]
VLN(Vision-and-Language Navigation)の最近の研究は、RLエージェントを訓練して、フォトリアリスティックな環境で自然言語ナビゲーション命令を実行する。
人間の指導データが不足し、訓練環境の多様性が限られていることを考えると、これらのエージェントは複雑な言語基盤と空間言語理解に苦慮している。
我々は、密集した360度パノラマで捉えた500以上の屋内環境を取り、これらのパノラマを通して航法軌道を構築し、各軌道に対して視覚的に接地された指示を生成する。
4.2Mの命令-軌道対のデータセットは、既存の人間の注釈付きデータセットよりも2桁大きい。
論文 参考訳(メタデータ) (2022-10-06T17:59:08Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - CrossLoc: Scalable Aerial Localization Assisted by Multimodal Synthetic
Data [2.554905387213586]
本稿では,合成データを用いて実世界のカメラポーズを推定する視覚的位置決めシステムを提案する。
データ不足を緩和するために,汎用な合成データ生成ツールTOPO-DataGenを導入する。
また、ポーズ推定のためのクロスモーダル視覚表現学習手法であるCrossLocを導入する。
論文 参考訳(メタデータ) (2021-12-16T18:05:48Z) - Vision-Language Navigation with Random Environmental Mixup [112.94609558723518]
視覚言語ナビゲーション(VLN)タスクは、視覚的な観察を認識し、自然言語の命令を解釈しながら、エージェントがステップバイステップでナビゲートする必要がある。
従来の研究では、データのバイアスを減らすために様々なデータ拡張手法が提案されている。
本研究では,混成環境を介し,相互接続された住宅シーンを付加データとして生成するランダム環境混成(REM)手法を提案する。
論文 参考訳(メタデータ) (2021-06-15T04:34:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。