Uncertainty in Natural Language Generation: From Theory to Applications
- URL: http://arxiv.org/abs/2307.15703v1
- Date: Fri, 28 Jul 2023 17:51:21 GMT
- Title: Uncertainty in Natural Language Generation: From Theory to Applications
- Authors: Joris Baan, Nico Daheim, Evgenia Ilia, Dennis Ulmer, Haau-Sing Li,
Raquel Fern\'andez, Barbara Plank, Rico Sennrich, Chrysoula Zerva, Wilker
Aziz
- Abstract summary: We argue that a principled treatment of uncertainty can assist in creating systems and evaluation protocols better aligned with these goals.
We first present the fundamental theory, frameworks and vocabulary required to represent uncertainty.
We then propose a two-dimensional taxonomy that is more informative and faithful than the popular aleatoric/epistemic dichotomy.
- Score: 42.55924708592451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances of powerful Language Models have allowed Natural Language
Generation (NLG) to emerge as an important technology that can not only perform
traditional tasks like summarisation or translation, but also serve as a
natural language interface to a variety of applications. As such, it is crucial
that NLG systems are trustworthy and reliable, for example by indicating when
they are likely to be wrong; and supporting multiple views, backgrounds and
writing styles -- reflecting diverse human sub-populations. In this paper, we
argue that a principled treatment of uncertainty can assist in creating systems
and evaluation protocols better aligned with these goals. We first present the
fundamental theory, frameworks and vocabulary required to represent
uncertainty. We then characterise the main sources of uncertainty in NLG from a
linguistic perspective, and propose a two-dimensional taxonomy that is more
informative and faithful than the popular aleatoric/epistemic dichotomy.
Finally, we move from theory to applications and highlight exciting research
directions that exploit uncertainty to power decoding, controllable generation,
self-assessment, selective answering, active learning and more.
Related papers
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
We focus on the trustworthiness of language models with respect to retrieval augmentation.
We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge.
Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence.
arXiv Detail & Related papers (2024-10-22T09:25:21Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically.
Recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities.
Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning.
arXiv Detail & Related papers (2024-10-07T02:31:47Z) - Towards Bridging the Digital Language Divide [4.234367850767171]
multilingual language processing systems often exhibit a hardwired, yet usually involuntary and hidden representational preference towards certain languages.
We show that biased technology is often the result of research and development methodologies that do not do justice to the complexity of the languages being represented.
We present a new initiative that aims at reducing linguistic bias through both technological design and methodology.
arXiv Detail & Related papers (2023-07-25T10:53:20Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
We propose rational meaning construction, a computational framework for language-informed thinking.
We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought.
We show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings.
We extend our framework to integrate cognitively-motivated symbolic modules.
arXiv Detail & Related papers (2023-06-22T05:14:00Z) - On the Amplification of Linguistic Bias through Unintentional
Self-reinforcement Learning by Generative Language Models -- A Perspective [2.458437232470188]
Generative Language Models (GLMs) have the potential to significantly shape our linguistic landscape.
This paper explores the possibility of such a phenomenon, where the initial biases in GLMs, reflected in their generated text, can feed into the learning material of subsequent models.
The implications of this potential self-reinforcement cycle extend beyond the models themselves, impacting human language and discourse.
arXiv Detail & Related papers (2023-06-12T14:17:05Z) - Dealing with Semantic Underspecification in Multimodal NLP [3.5846770619764423]
Intelligent systems that aim at mastering language as humans do must deal with its semantic underspecification.
Standard NLP models have, in principle, no or limited access to such extra information.
multimodal systems grounding language into other modalities, such as vision, are naturally equipped to account for this phenomenon.
arXiv Detail & Related papers (2023-06-08T14:39:24Z) - Language Models as Inductive Reasoners [125.99461874008703]
We propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts.
We create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language.
We provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts.
arXiv Detail & Related papers (2022-12-21T11:12:14Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
We describe a framework for imitation learning in which goals and observations are represented as a sequence of embeddings.
We demonstrate that this framework enables effective generalization across different environments.
For test tasks involving novel goals or novel scenes, initializing policies with language models improves task completion rates by 43.6%.
arXiv Detail & Related papers (2022-02-03T18:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.