Quantum-limited stochastic optical neural networks operating at a few quanta per activation
- URL: http://arxiv.org/abs/2307.15712v2
- Date: Mon, 03 Feb 2025 17:23:03 GMT
- Title: Quantum-limited stochastic optical neural networks operating at a few quanta per activation
- Authors: Shi-Yuan Ma, Tianyu Wang, Jérémie Laydevant, Logan G. Wright, Peter L. McMahon,
- Abstract summary: Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor.
We study optical neural networks where all layers except the last are operated in the limit that each neuron can be activated by just a single photon.
We show that by using a physics-based probabilistic model of the neuron activations in training, it is possible to perform accurate machine-learning inference in spite of the extremely high shot noise.
- Score: 6.12660587056967
- License:
- Abstract: Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor. Analog physical neural networks hold promise for improved energy efficiency compared to digital electronic neural networks. However, they are typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large, and the noise can be treated as a perturbation. We study optical neural networks where all layers except the last are operated in the limit that each neuron can be activated by just a single photon, and as a result the noise on neuron activations is no longer merely perturbative. We show that by using a physics-based probabilistic model of the neuron activations in training, it is possible to perform accurate machine-learning inference in spite of the extremely high shot noise (SNR ~ 1). We experimentally demonstrated MNIST handwritten-digit classification with a test accuracy of 98% using an optical neural network with a hidden layer operating in the single-photon regime; the optical energy used to perform the classification corresponds to just 0.038 photons per multiply-accumulate (MAC) operation. Our physics-aware stochastic training approach might also prove useful with non-optical ultra-low-power hardware.
Related papers
- A spiking photonic neural network of 40.000 neurons, trained with rank-order coding for leveraging sparsity [0.0]
We present a photonic neural network (SNN) comprising 40,000 neurons using off-the-shelf components.
The network achieves 83.5% accuracy on MNIST using 22% of neurons, and 77.5% with 8.5% neuron utilization.
This demonstration integrates photonic nonlinearity, excitability, and sparse computation, paving the way for efficient large-scale photonic neuromorphic systems.
arXiv Detail & Related papers (2024-11-28T15:28:30Z) - Optical training of large-scale Transformers and deep neural networks with direct feedback alignment [48.90869997343841]
We experimentally implement a versatile and scalable training algorithm, called direct feedback alignment, on a hybrid electronic-photonic platform.
An optical processing unit performs large-scale random matrix multiplications, which is the central operation of this algorithm, at speeds up to 1500 TeraOps.
We study the compute scaling of our hybrid optical approach, and demonstrate a potential advantage for ultra-deep and wide neural networks.
arXiv Detail & Related papers (2024-09-01T12:48:47Z) - Expressivity of Neural Networks with Random Weights and Learned Biases [44.02417750529102]
Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters.
We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can be trained to perform multiple tasks by learning biases only.
Our results are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights.
arXiv Detail & Related papers (2024-07-01T04:25:49Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Spatially Varying Nanophotonic Neural Networks [39.1303097259564]
Photonic processors that execute operations using photons instead of electrons promise to enable optical neural networks with ultra-low latency and power consumption.
Existing optical neural networks, limited by the underlying network designs, have achieved image recognition accuracy far below that of state-of-the-art electronic neural networks.
arXiv Detail & Related papers (2023-08-07T08:48:46Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Resonant tunnelling diode nano-optoelectronic spiking nodes for
neuromorphic information processing [0.0]
We introduce an optoelectronic artificial neuron capable of operating at ultrafast rates and with low energy consumption.
The proposed system combines an excitable tunnelling diode (RTD) element with a nanoscale light source.
arXiv Detail & Related papers (2021-07-14T14:11:04Z) - An optical neural network using less than 1 photon per multiplication [4.003843776219224]
We experimentally demonstrate an optical neural network achieving 99% accuracy on handwritten-digit classification.
This performance was achieved using a custom free-space optical processor.
Our results provide a proof-of-principle for low-optical-power operation.
arXiv Detail & Related papers (2021-04-27T20:43:23Z) - All-optical neural network quantum state tomography [0.39146761527401414]
We build an integrated all-optical setup for neural network QST, based on an all-optical neural network (AONN)
Experiment results demonstrate the validity and efficiency of the all-optical setup.
Our all-optical setup of integrated AONN-QST may shed light on replenishing the all-optical quantum network with the last brick.
arXiv Detail & Related papers (2021-03-11T04:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.