Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces
- URL: http://arxiv.org/abs/2409.04428v2
- Date: Thu, 26 Sep 2024 07:53:04 GMT
- Title: Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces
- Authors: Alexandru Vasilache, Jann Krausse, Klaus Knobloch, Juergen Becker,
- Abstract summary: Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
- Score: 42.72938925647165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia by restoring their ability to perform daily activities. However, current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring. Wireless iBMIs offer a solution but are constrained by a limited data rate. To overcome this challenge, we are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs. The networks consist of a temporal convolution-based compression followed by recurrent processing and a final interpolation back to the original sequence length. As recurrent units, we explore gated recurrent units (GRUs), leaky integrate-and-fire (LIF) neurons, and a combination of both - spiking GRUs (sGRUs) and analyze their differences in terms of accuracy, footprint, and activation sparsity. To that end, we train decoders on the "Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology" dataset and evaluate it using the NeuroBench framework, targeting both tracks of the IEEE BioCAS Grand Challenge on Neural Decoding. Our approach achieves high accuracy in predicting velocities of primate reaching movements from multichannel primary motor cortex recordings while maintaining a low number of synaptic operations, surpassing the current baseline models in the NeuroBench framework. This work highlights the potential of hybrid neural networks to facilitate wireless iBMIs with high decoding precision and a substantial increase in the number of monitored neurons, paving the way toward more advanced neuroprosthetic technologies.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
Invasive brain-machine interfaces (BMIs) can significantly improve the life quality of motor-impaired patients.
BMIs must meet strict latency and energy constraints while providing reliable decoding performance.
We trained RSNNs to decode finger velocity from cortical spike trains of two macaque monkeys.
arXiv Detail & Related papers (2024-09-03T10:15:33Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding
for Implantable Brain-Machine Interface [11.786044345820459]
We propose a novel neural-power network (SNN) decoder for implantable regression tasks.
The proposed SNN decoder achieves the same level of coefficient correlation as the state-of-the-art ANN decoder in offline finger velocity decoding tasks.
arXiv Detail & Related papers (2022-10-07T12:58:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
Spiking neural networks are a promising approach towards next-generation models of the brain in computational neuroscience.
We apply end-to-end learning with membrane potential-based backpropagation to a spiking convolutional auto-encoder.
We show that applying regularization on membrane potential and spiking output successfully avoids both dead and bursting neurons.
arXiv Detail & Related papers (2021-09-22T21:27:40Z) - Surrogate gradients for analog neuromorphic computing [2.6475944316982942]
We show that learning self-corrects for device mismatch resulting in competitive spiking network performance on vision and speech benchmarks.
Our work sets several new benchmarks for low-energy spiking network processing on analog neuromorphic hardware.
arXiv Detail & Related papers (2020-06-12T14:45:12Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.