論文の概要: Primitive Skill-based Robot Learning from Human Evaluative Feedback
- arxiv url: http://arxiv.org/abs/2307.15801v2
- Date: Wed, 2 Aug 2023 06:22:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 17:04:39.100652
- Title: Primitive Skill-based Robot Learning from Human Evaluative Feedback
- Title(参考訳): 人間の評価フィードバックから学ぶプリミティブスキルに基づくロボット
- Authors: Ayano Hiranaka, Minjune Hwang, Sharon Lee, Chen Wang, Li Fei-Fei,
Jiajun Wu, Ruohan Zhang
- Abstract要約: 強化学習アルゴリズムは、現実世界環境における長期ロボット操作タスクを扱う際に、課題に直面している。
本稿では,人間フィードバックからの強化学習(RLHF)と原始的スキルベース強化学習の2つのアプローチを活用する新しいフレームワークSEEDを提案する。
以上の結果から,SEEDはサンプル効率と安全性において最先端のRLアルゴリズムよりも優れていた。
- 参考スコア(独自算出の注目度): 28.046559859978597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) algorithms face significant challenges when
dealing with long-horizon robot manipulation tasks in real-world environments
due to sample inefficiency and safety issues. To overcome these challenges, we
propose a novel framework, SEED, which leverages two approaches: reinforcement
learning from human feedback (RLHF) and primitive skill-based reinforcement
learning. Both approaches are particularly effective in addressing sparse
reward issues and the complexities involved in long-horizon tasks. By combining
them, SEED reduces the human effort required in RLHF and increases safety in
training robot manipulation with RL in real-world settings. Additionally,
parameterized skills provide a clear view of the agent's high-level intentions,
allowing humans to evaluate skill choices before they are executed. This
feature makes the training process even safer and more efficient. To evaluate
the performance of SEED, we conducted extensive experiments on five
manipulation tasks with varying levels of complexity. Our results show that
SEED significantly outperforms state-of-the-art RL algorithms in sample
efficiency and safety. In addition, SEED also exhibits a substantial reduction
of human effort compared to other RLHF methods. Further details and video
results can be found at https://seediros23.github.io/.
- Abstract(参考訳): 強化学習(rl)アルゴリズムは、サンプルの非効率性や安全性の問題から、実環境におけるロボット操作タスクを扱う上で、大きな課題に直面している。
これらの課題を克服するために、人間フィードバックからの強化学習(RLHF)と原始的スキルベース強化学習という2つのアプローチを活用する新しいフレームワークSEEDを提案する。
どちらのアプローチも、スパース報酬問題や長いホリゾンタスクに関わる複雑さに対処するのに特に効果的である。
これらの組み合わせにより、SEEDはRLHFに必要な人的労力を削減し、実世界の環境でRLでロボット操作を訓練する際の安全性を高める。
さらに、パラメータ化されたスキルは、エージェントのハイレベルな意図を明確に把握し、人間が実行前にスキルの選択を評価することを可能にする。
この機能はトレーニングプロセスをより安全で効率的にする。
本研究は,SEEDの性能を評価するために,5つの操作タスクを多種多様な複雑さで実験した。
以上の結果から,SEEDはサンプル効率と安全性において最先端のRLアルゴリズムよりも優れていた。
加えて、SEEDは他のRLHF法と比較して、人間の労力を大幅に削減している。
詳細とビデオ結果はhttps://seediros23.github.io/で確認できる。
関連論文リスト
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
本稿では,多種多様な操作タスクに対して印象的な性能を示す,ループ内視覚に基づくRLシステムを提案する。
提案手法では,実証と人間の修正,効率的なRLアルゴリズム,その他のシステムレベルの設計選択を統合してポリシを学習する。
提案手法は,再現学習のベースラインと先行RLアプローチを著しく上回り,成功率の平均2倍,実行速度1.8倍に向上した。
論文 参考訳(メタデータ) (2024-10-29T08:12:20Z) - SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
視覚深部強化学習(RL)は、ロボットが非構造化タスクの視覚入力からスキルを習得することを可能にする。
現在のアルゴリズムはサンプル効率が低く、実用性が制限されている。
本稿では,RLエージェントのアーキテクチャと最適化の両方を改善する手法であるMENTORを提案する。
論文 参考訳(メタデータ) (2024-10-19T04:31:54Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - HAIM-DRL: Enhanced Human-in-the-loop Reinforcement Learning for Safe and Efficient Autonomous Driving [2.807187711407621]
本稿では,AIメンターをベースとした深層強化学習(HAIM-DRL)フレームワークとして,Human-in-the-loop強化学習法を提案する。
私たちはまず、AIメンター(HAIM)と呼ばれる人間の知性をAIに効果的に注入する革新的な学習パラダイムを紹介します。
このパラダイムでは、人間の専門家がAIエージェントのメンターとして機能し、エージェントはトラフィックフローの障害を最小限に抑えるためにガイドされる。
論文 参考訳(メタデータ) (2024-01-06T08:30:14Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
本稿では,強化学習による巧妙な操作スキルの学習を効率化するシステムを提案する。
我々のアプローチの主な考え方は、サンプル効率のRLとリプレイバッファブートストラップの最近の進歩の統合である。
本システムでは,実世界の学習サイクルを,模倣に基づくピックアップポリシを通じて学習されたリセットを組み込むことで完遂する。
論文 参考訳(メタデータ) (2023-09-06T19:05:31Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
我々は、フィードバックと非政治学習の両方の長所を生かした、非政治的、インタラクティブな強化学習アルゴリズムを提案する。
提案手法は,従来ヒト・イン・ザ・ループ法で検討されていたよりも複雑度の高いタスクを学習可能であることを実証する。
論文 参考訳(メタデータ) (2021-06-09T14:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。