論文の概要: Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping
- arxiv url: http://arxiv.org/abs/2307.15807v2
- Date: Tue, 14 Nov 2023 11:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 18:40:00.121488
- Title: Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping
- Title(参考訳): iotデバイスと機械学習を用いた産業機械の異常検出:体系的マッピング
- Authors: S\'ergio F. Chevtchenko, Elisson da Silva Rocha, Monalisa Cristina
Moura Dos Santos, Ricardo Lins Mota, Diego Moura Vieira, Ermeson Carneiro de
Andrade, Danilo Ricardo Barbosa de Ara\'ujo
- Abstract要約: IoT(Internet of Things)は、産業機械から大量のデータを収集することを可能にする。
しかし、モノのインターネットによって生成されるデータの量と複雑さは、人間が手動で異常を検出するのを困難にしている。
機械学習(ML)アルゴリズムは、生成されたデータを分析することによって、産業機械における異常検出を自動化することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection is critical in the smart industry for preventing equipment
failure, reducing downtime, and improving safety. Internet of Things (IoT) has
enabled the collection of large volumes of data from industrial machinery,
providing a rich source of information for Anomaly Detection. However, the
volume and complexity of data generated by the Internet of Things ecosystems
make it difficult for humans to detect anomalies manually. Machine learning
(ML) algorithms can automate anomaly detection in industrial machinery by
analyzing generated data. Besides, each technique has specific strengths and
weaknesses based on the data nature and its corresponding systems. However, the
current systematic mapping studies on Anomaly Detection primarily focus on
addressing network and cybersecurity-related problems, with limited attention
given to the industrial sector. Additionally, these studies do not cover the
challenges involved in using ML for Anomaly Detection in industrial machinery
within the context of the IoT ecosystems. This paper presents a systematic
mapping study on Anomaly Detection for industrial machinery using IoT devices
and ML algorithms to address this gap. The study comprehensively evaluates 84
relevant studies spanning from 2016 to 2023, providing an extensive review of
Anomaly Detection research. Our findings identify the most commonly used
algorithms, preprocessing techniques, and sensor types. Additionally, this
review identifies application areas and points to future challenges and
research opportunities.
- Abstract(参考訳): 異常検出はスマート産業において、機器故障の防止、ダウンタイムの低減、安全性の向上に不可欠である。
IoT(Internet of Things)は、産業機械からの大量のデータ収集を可能にし、異常検出のための豊富な情報ソースを提供する。
しかし、モノのインターネットによって生成されるデータの量と複雑さは、人間が手動で異常を検出するのを困難にしている。
機械学習(ML)アルゴリズムは、生成されたデータを分析して、産業機械の異常検出を自動化する。
さらに、それぞれのテクニックには、データの性質と対応するシステムに基づいて、特定の強みと弱みがある。
しかし、現在の異常検出に関する体系的マッピング研究は、主にネットワークやサイバーセキュリティ関連の問題に焦点をあてており、産業部門への注意が限定されている。
さらに、これらの研究は、IoTエコシステムのコンテキスト内で産業機械の異常検出にMLを使用する際の課題をカバーしていない。
本稿では,IoTデバイスとMLアルゴリズムを用いた産業機械の異常検出の系統的マッピングを行い,このギャップに対処する。
この研究は、2016年から2023年までの84の関連研究を包括的に評価し、異常検出研究の広範なレビューを提供する。
以上より,最も一般的なアルゴリズム,前処理技術,センサタイプを特定する。
さらに、本レビューでは、応用分野を特定し、今後の課題と研究の機会を論じる。
関連論文リスト
- IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
ビデオ異常検出(VAD)は,ビデオフレーム内の異常を認識することを目的とした課題である。
本稿では,産業シナリオにおけるVADに特化して設計された新しいデータセットIPADを提案する。
このデータセットは16の異なる産業用デバイスをカバーし、合成ビデオと実世界のビデオの両方を6時間以上保存している。
論文 参考訳(メタデータ) (2024-04-23T13:38:01Z) - Intelligent Condition Monitoring of Industrial Plants: An Overview of
Methodologies and Uncertainty Management Strategies [2.600463444320238]
本稿では, 産業プラントの知的状態モニタリングと故障検出, 診断方法の概要について述べる。
最もポピュラーで最先端のディープラーニング(DL)と機械学習(ML)アルゴリズムは、産業プラントの状態監視、故障検出、診断のためのアルゴリズムである。
テネシー・イーストマン・プロセス(TEP)を利用したアルゴリズムの精度と仕様の比較を行った。
論文 参考訳(メタデータ) (2024-01-03T21:35:03Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Wireless Sensor Networks anomaly detection using Machine Learning: A
Survey [1.2699602067359046]
無線センサネットワーク(WSN)は、様々な民間・軍事用途でますます価値が高まっている。
WSNによって生成された知覚されたデータは、しばしばノイズが多く信頼できないため、異常を検出して診断することは困難である。
機械学習(ML)技術は、知覚されたデータ中の異常なパターンを検出し識別することで、この問題に対処するために広く利用されている。
論文 参考訳(メタデータ) (2023-03-15T15:02:11Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - Exploring the Use of Data-Driven Approaches for Anomaly Detection in the
Internet of Things (IoT) Environment [4.724825031148412]
IoT(Internet of Things)は、物理コンピューティングデバイス、センサー、ソフトウェア、その他のテクノロジを接続するシステムである。
データは、人間のインタラクションを必要とせずに、ネットワーク上の他のデバイスと収集、転送、交換することができる。
近年,IoT環境における異常検出の研究が普及し,その必要性が高まっている。
論文 参考訳(メタデータ) (2022-12-31T06:28:58Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
本稿では, 農作物に設置したセンサから, 7種類のセンサからのデータと, 振動センサを用いた先進的な製造試験からのデータを分析する。
これら2つのアプリケーション領域において、予測的障害分類がいかに達成され、予測的メンテナンスの道が開かれたかを示す。
論文 参考訳(メタデータ) (2021-02-11T02:37:27Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。