論文の概要: A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2307.15830v2
- Date: Thu, 25 Apr 2024 22:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 18:17:43.105233
- Title: A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting
- Title(参考訳): 時系列予測におけるリカレントニューラルネットワークの有効性評価のための距離相関に基づくアプローチ
- Authors: Christopher Salazar, Ashis G. Banerjee,
- Abstract要約: 距離相関の多元的指標を用いて,RNN成分と時系列特性をリンクする手法を提案する。
RNN活性化層が時系列のラグ構造をよく学習していることを実証的に示す。
また,アクティベーション層は移動平均およびヘテロスケダティック時系列過程を適切にモデル化できないことを示す。
- 参考スコア(独自算出の注目度): 1.9950682531209158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting has received a lot of attention, with recurrent neural networks (RNNs) being one of the widely used models due to their ability to handle sequential data. Previous studies on RNN time series forecasting, however, show inconsistent outcomes and offer few explanations for performance variations among the datasets. In this paper, we provide an approach to link time series characteristics with RNN components via the versatile metric of distance correlation. This metric allows us to examine the information flow through the RNN activation layers to be able to interpret and explain their performance. We empirically show that the RNN activation layers learn the lag structures of time series well. However, they gradually lose this information over the span of a few consecutive layers, thereby worsening the forecast quality for series with large lag structures. We also show that the activation layers cannot adequately model moving average and heteroskedastic time series processes. Last, we generate heatmaps for visual comparisons of the activation layers for different choices of the network hyperparameters to identify which of them affect the forecast performance. Our findings can, therefore, aid practitioners in assessing the effectiveness of RNNs for given time series data without actually training and evaluating the networks.
- Abstract(参考訳): 時系列予測は多くの注目を集めており、逐次データを扱う能力のために、リカレントニューラルネットワーク(RNN)が広く使用されているモデルの1つである。
しかし、RNNの時系列予測に関する以前の研究は、一貫性のない結果を示し、データセットのパフォーマンス変化についてはほとんど説明していない。
本稿では,RNN成分と時系列特性をリンクする手法を提案する。
このメトリクスにより、RNNアクティベーション層を流れる情報の流れを調べて、それらの性能を解釈し、説明することができます。
RNN活性化層が時系列のラグ構造をよく学習していることを実証的に示す。
しかし、この情報は数層にわたって徐々に失われ、大きなラグ構造を持つシリーズの予測品質が悪化する。
また,アクティベーション層は移動平均およびヘテロスケダティック時系列過程を適切にモデル化できないことを示す。
最後に、ネットワークハイパーパラメータの異なる選択に対して、アクティベーション層を視覚的に比較するためのヒートマップを生成し、そのどれが予測性能に影響を与えるかを特定する。
その結果,ネットワークのトレーニングや評価を行なわずに,各時系列データに対するRNNの有効性を評価する上で,実践者を支援することができた。
関連論文リスト
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - TCGPN: Temporal-Correlation Graph Pre-trained Network for Stock Forecasting [1.864621482724548]
本稿では,これらの制約に対処するため,TCGPN(Temporal-Correlation Graph Pre-trained Network)と呼ばれる新しい手法を提案する。
TCGPNはテンポラル相関融合エンコーダを用いて,時間的および相関的な事前学習タスクを慎重に設計した混合表現と事前学習を行う。
CSI300とCSI500は、最小限の周期性を示す。
論文 参考訳(メタデータ) (2024-07-26T05:27:26Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
スパイキングニューラルネットワーク(SNN)は、時間データの複雑さを捉えるためのユニークな経路を提供する。
SNNを時系列予測に適用することは、効果的な時間的アライメントの難しさ、符号化プロセスの複雑さ、およびモデル選択のための標準化されたガイドラインの欠如により困難である。
本稿では,時間情報処理におけるスパイクニューロンの効率を活かした時系列予測タスクにおけるSNNのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:23:50Z) - Time-Parameterized Convolutional Neural Networks for Irregularly Sampled
Time Series [26.77596449192451]
不規則にサンプリングされた時系列は、いくつかのアプリケーション領域でユビキタスであり、スパースであり、完全に観測されていない、非整合的な観察に繋がる。
標準シーケンシャルニューラルネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)は、観測時間間の定期的な間隔を考慮し、不規則な時系列モデリングに重大な課題を提起する。
時間的に不規則なカーネルを用いて畳み込み層をパラメータ化する。
論文 参考訳(メタデータ) (2023-08-06T21:10:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
GANを用いたSING(Self-attention based Time-Series Imputation Networks)を提案する。
我々は、時系列の潜在表現を学習するために、生成的対向ネットワークと双方向リカレントニューラルネットワークを利用する。
3つの実世界のデータセットによる実験結果から、STINGは既存の最先端手法よりも計算精度が優れていることが示された。
論文 参考訳(メタデータ) (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
イタリア・ボルツァーノの監視アパートから得られた時系列データギャップを埋めるための2つのDeep Learningモデルを開発した。
提案手法は, 変動するデータの性質を把握し, 対象時系列の再構成に優れた精度を示す。
論文 参考訳(メタデータ) (2022-04-21T09:40:30Z) - Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of
Time Series [77.47313102926017]
Radflowは、お互いに影響を与える時系列ネットワークの新しいモデルである。
それは3つの重要なアイデアを具現化します:時間に依存するノード埋め込み、マルチヘッドの注意を持つ隣接するノードからの影響の流れの集約、および時系列の多層分解を得るための繰り返しニューラルネットワーク。
radflowは異なる傾向や季節パターンを学習でき、欠落したノードやエッジに対して頑健であり、ネットワークの隣人間の時間パターンの相関は影響強度を反映している。
論文 参考訳(メタデータ) (2021-02-15T00:57:28Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。