Motion Degeneracy in Self-supervised Learning of Elevation Angle
Estimation for 2D Forward-Looking Sonar
- URL: http://arxiv.org/abs/2307.16160v2
- Date: Tue, 1 Aug 2023 01:48:25 GMT
- Title: Motion Degeneracy in Self-supervised Learning of Elevation Angle
Estimation for 2D Forward-Looking Sonar
- Authors: Yusheng Wang, Yonghoon Ji, Chujie Wu, Hiroshi Tsuchiya, Hajime Asama,
Atsushi Yamashita
- Abstract summary: This study aims to realize stable self-supervised learning of elevation angle estimation without pretraining using synthetic images.
We first analyze the motion field of 2D forward-looking sonar, which is related to the main supervision signal.
- Score: 4.683630397028384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 2D forward-looking sonar is a crucial sensor for underwater robotic
perception. A well-known problem in this field is estimating missing
information in the elevation direction during sonar imaging. There are demands
to estimate 3D information per image for 3D mapping and robot navigation during
fly-through missions. Recent learning-based methods have demonstrated their
strengths, but there are still drawbacks. Supervised learning methods have
achieved high-quality results but may require further efforts to acquire 3D
ground-truth labels. The existing self-supervised method requires pretraining
using synthetic images with 3D supervision. This study aims to realize stable
self-supervised learning of elevation angle estimation without pretraining
using synthetic images. Failures during self-supervised learning may be caused
by motion degeneracy problems. We first analyze the motion field of 2D
forward-looking sonar, which is related to the main supervision signal. We
utilize a modern learning framework and prove that if the training dataset is
built with effective motions, the network can be trained in a self-supervised
manner without the knowledge of synthetic data. Both simulation and real
experiments validate the proposed method.
Related papers
- Markerless Camera-to-Robot Pose Estimation via Self-supervised
Sim-to-Real Transfer [26.21320177775571]
We propose an end-to-end pose estimation framework that is capable of online camera-to-robot calibration and a self-supervised training method.
Our framework combines deep learning and geometric vision for solving the robot pose, and the pipeline is fully differentiable.
arXiv Detail & Related papers (2023-02-28T05:55:42Z) - Visual Reinforcement Learning with Self-Supervised 3D Representations [15.991546692872841]
We present a unified framework for self-supervised learning of 3D representations for motor control.
Our method enjoys improved sample efficiency in simulated manipulation tasks compared to 2D representation learning methods.
arXiv Detail & Related papers (2022-10-13T17:59:55Z) - An Empirical Study of Pseudo-Labeling for Image-based 3D Object
Detection [72.30883544352918]
We investigate whether pseudo-labels can provide effective supervision for the baseline models under varying settings.
We achieve 20.23 AP for moderate level on the KITTI-3D testing set without bells and whistles, improving the baseline model by 6.03 AP.
We hope this work can provide insights for the image-based 3D detection community under a semi-supervised setting.
arXiv Detail & Related papers (2022-08-15T12:17:46Z) - 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone [10.341296683155973]
We propose using a self-supervised training strategy to learn a general point cloud backbone model for downstream 3D vision tasks.
Our main contribution leverages learned flow and motion representations and combines a self-supervised backbone with a 3D detection head.
Experiments on KITTI and nuScenes benchmarks show that the proposed self-supervised pre-training increases 3D detection performance significantly.
arXiv Detail & Related papers (2022-05-02T07:53:29Z) - Unsupervised Learning of Efficient Geometry-Aware Neural Articulated
Representations [89.1388369229542]
We propose an unsupervised method for 3D geometry-aware representation learning of articulated objects.
We obviate this need by learning the representations with GAN training.
Experiments demonstrate the efficiency of our method and show that GAN-based training enables learning of controllable 3D representations without supervision.
arXiv Detail & Related papers (2022-04-19T12:10:18Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - SEAL: Self-supervised Embodied Active Learning using Exploration and 3D
Consistency [122.18108118190334]
We present a framework called Self- Embodied Embodied Active Learning (SEAL)
It utilizes perception models trained on internet images to learn an active exploration policy.
We and build utilize 3D semantic maps to learn both action and perception in a completely self-supervised manner.
arXiv Detail & Related papers (2021-12-02T06:26:38Z) - 3D Registration for Self-Occluded Objects in Context [66.41922513553367]
We introduce the first deep learning framework capable of effectively handling this scenario.
Our method consists of an instance segmentation module followed by a pose estimation one.
It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure.
arXiv Detail & Related papers (2020-11-23T08:05:28Z) - Exploring the Capabilities and Limits of 3D Monocular Object Detection
-- A Study on Simulation and Real World Data [0.0]
3D object detection based on monocular camera data is key enabler for autonomous driving.
Recent deep learning methods show promising results to recover depth information from single images.
In this paper, we evaluate the performance of a 3D object detection pipeline which is parameterizable with different depth estimation configurations.
arXiv Detail & Related papers (2020-05-15T09:05:17Z) - Self-Supervised Human Depth Estimation from Monocular Videos [99.39414134919117]
Previous methods on estimating detailed human depth often require supervised training with ground truth' depth data.
This paper presents a self-supervised method that can be trained on YouTube videos without known depth.
Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.
arXiv Detail & Related papers (2020-05-07T09:45:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.