Quantum metrology enhanced by the $XY$ spin interaction in a generalized Tavis-Cummings model
- URL: http://arxiv.org/abs/2307.16166v3
- Date: Tue, 9 Apr 2024 05:13:32 GMT
- Title: Quantum metrology enhanced by the $XY$ spin interaction in a generalized Tavis-Cummings model
- Authors: Yuguo Su, Wangjun Lu, Hai-Long Shi,
- Abstract summary: We explore the impact of the many-body effect on estimation precision, quantified by the quantum Fisher information (QFI)
We emphasize the indispensable role of the spin anisotropy in achieving the Heisenberg-scaling precision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology is recognized for its capability to offer high-precision estimation by utilizing quantum resources, such as quantum entanglement. Here, we propose a generalized Tavis-Cummings model by introducing the $XY$ spin interaction to explore the impact of the many-body effect on estimation precision, quantified by the quantum Fisher information (QFI). By deriving the effective description of our model, we establish a closed relationship between the QFI and the spin fluctuation induced by the $XY$ spin interaction. Based on this exact relation, we emphasize the indispensable role of the spin anisotropy in achieving the Heisenberg-scaling precision for estimating a weak magnetic field. Furthermore, we observe that the estimation precision can be enhanced by increasing the strength of the spin anisotropy. We also reveal a clear scaling transition of the QFI in the Tavis-Cummings model with the reduced Ising interaction. Our results contribute to the enrichment of metrology theory by considering many-body effects, and they also present an alternative approach to improving the estimation precision by harnessing the power provided by many-body quantum phases.
Related papers
- Beyond Average Hamiltonian Theory for Quantum Sensing [0.0]
The application of average Hamiltonian theory to magnetic resonance and quantum sensing informs pulse sequence design.
Here we establish that certain symmetries, such as rapid echos, allow AHT to remain accurate well beyond the perturbative limit.
An exact method is presented to determine the sensor response to a target signal, which stays valid beyond the regime of AHT convergence.
arXiv Detail & Related papers (2024-10-05T22:11:53Z) - Characterization of partially accessible anisotropic spin chains in the
presence of anti-symmetric exchange [0.0]
We address quantum characterization of anisotropic spin chains in the presence of antisymmetric exchange.
We investigate whether the Hamiltonian parameters of the chain may be estimated with precision approaching the ultimate limit imposed by quantum mechanics.
arXiv Detail & Related papers (2024-01-25T19:26:35Z) - Criticality-Enhanced Precision in Phase Thermometry [4.508246364123997]
We study non-invasive quantum thermometry of a finite, two-dimensional Ising spin lattice based on measuring the non-Markovian dephasing dynamics of a spin probe coupled to the lattice.
We demonstrate a strong critical enhancement of the achievable precision in terms of the quantum Fisher information.
arXiv Detail & Related papers (2023-11-24T16:08:55Z) - Criticality-Enhanced Quantum Sensing in the Anisotropic Quantum Rabi
Model [6.284204043713657]
We generalize the framework for criticality-enhanced quantum sensing by the quantum Rabi model to its anisotropic counterpart.
We find that the contributions of the rotating-wave and counterrotating-wave interaction terms are symmetric at the limit of the infinite ratio of qubit frequency to field frequency.
arXiv Detail & Related papers (2023-02-27T11:20:31Z) - Quantum metrology with critical driven-dissipative collective spin
system [0.0]
We propose a quantum probe consisting of coherently driven ensemble of $N$ spin-1/2 particles under the effect of squeezed, collective spin decay.
Thanks to the dissipative phase transition the sensitivity of the parameter estimation can be significantly enhanced.
arXiv Detail & Related papers (2023-02-10T12:33:39Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.