Beyond Average Hamiltonian Theory for Quantum Sensing
- URL: http://arxiv.org/abs/2410.04296v1
- Date: Sat, 5 Oct 2024 22:11:53 GMT
- Title: Beyond Average Hamiltonian Theory for Quantum Sensing
- Authors: Jner Tzern Oon, Sebastian C. Carrasco, Connor A. Hart, George Witt, Vladimir S. Malinovsky, Ronald Walsworth,
- Abstract summary: The application of average Hamiltonian theory to magnetic resonance and quantum sensing informs pulse sequence design.
Here we establish that certain symmetries, such as rapid echos, allow AHT to remain accurate well beyond the perturbative limit.
An exact method is presented to determine the sensor response to a target signal, which stays valid beyond the regime of AHT convergence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of average Hamiltonian theory (AHT) to magnetic resonance and quantum sensing informs pulse sequence design, for example, by providing efficient approximations of spin dynamics while retaining important physical characteristics of system evolution. However, AHT predictions break down in many common experimental conditions, including for sensing with solid-state spins. Here we establish that certain symmetries, such as rapid echos, allow AHT to remain accurate well beyond the perturbative limit. An exact method is presented to determine the sensor response to a target signal, which stays valid beyond the regime of AHT convergence. This beyond AHT approach enables new opportunities in quantum control techniques that leverage complementary analytical and numerical methods, with applications in a variety of quantum sensing platforms, Hamiltonian engineering, and probes of quantum many-body phenomena.
Related papers
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Measurement-based cooling of many-body quantum systems [0.0]
We introduce a novel technique for efficiently cooling many-body quantum systems with unknown Hamiltonians down to their ground states.
We present numerical simulation results demonstrating the effectiveness of the technique applied to quantum spin chains with long-range and short-range interactions.
arXiv Detail & Related papers (2022-07-24T12:06:04Z) - Quantum effects beyond mean-field treatment in quantum optics [5.148894494637909]
Mean-field treatment (MFT) is frequently applied to approximately predict the dynamics of quantum optics systems.
Here, we provide a general and systematic theoretical framework based on the perturbation theory in company with the MFT to capture unanticipated quantum effects.
Our work clearly reveals the attendant quantum effects under mean-field treatment and provides a more precise theoretical framework to describe quantum optics systems.
arXiv Detail & Related papers (2021-11-29T15:45:24Z) - Relativistic meson spectra on ion-trap quantum simulators [0.0]
We analyze the capability of analog ion traps to explore relativistic meson spectra on current devices.
We focus on the E_8 quantum field theory regime, which arises due to longitudinal perturbations at the critical point of the transverse-field Ising model.
arXiv Detail & Related papers (2021-07-19T18:00:03Z) - Quantum Non-Hermitian Topological Sensors [0.0]
We investigate in the framework of quantum noise theory how the striking boundary-sensitivity recently discovered in the context of non-Hermitian (NH) topological phases may be harnessed to devise novel quantum sensors.
arXiv Detail & Related papers (2021-06-09T18:00:06Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.