STL: A Signed and Truncated Logarithm Activation Function for Neural
Networks
- URL: http://arxiv.org/abs/2307.16389v1
- Date: Mon, 31 Jul 2023 03:41:14 GMT
- Title: STL: A Signed and Truncated Logarithm Activation Function for Neural
Networks
- Authors: Yuanhao Gong
- Abstract summary: Activation functions play an essential role in neural networks.
We present a novel signed and truncated logarithm function as activation function.
The suggested activation function can be applied in a large range of neural networks.
- Score: 5.9622541907827875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Activation functions play an essential role in neural networks. They provide
the non-linearity for the networks. Therefore, their properties are important
for neural networks' accuracy and running performance. In this paper, we
present a novel signed and truncated logarithm function as activation function.
The proposed activation function has significantly better mathematical
properties, such as being odd function, monotone, differentiable, having
unbounded value range, and a continuous nonzero gradient. These properties make
it an excellent choice as an activation function. We compare it with other
well-known activation functions in several well-known neural networks. The
results confirm that it is the state-of-the-art. The suggested activation
function can be applied in a large range of neural networks where activation
functions are necessary.
Related papers
- TSSR: A Truncated and Signed Square Root Activation Function for Neural
Networks [5.9622541907827875]
We introduce a new activation function called the Truncated and Signed Square Root (TSSR) function.
This function is distinctive because it is odd, nonlinear, monotone and differentiable.
It has the potential to improve the numerical stability of neural networks.
arXiv Detail & Related papers (2023-08-09T09:40:34Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
We introduce the first algorithm to construct coresets for emphRBFNNs, i.e., small weighted subsets that approximate the loss of the input data on any radial basis function network.
We then perform empirical evaluations on function approximation and dataset subset selection on popular network architectures and data sets.
arXiv Detail & Related papers (2023-03-09T10:08:34Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Data-aware customization of activation functions reduces neural network
error [0.35172332086962865]
We show that data-aware customization of activation functions can result in striking reductions in neural network error.
A simple substitution with the seagull'' activation function in an already-refined neural network can lead to an order-of-magnitude reduction in error.
arXiv Detail & Related papers (2023-01-16T23:38:37Z) - Evaluating CNN with Oscillatory Activation Function [0.0]
CNNs capability to learn high-dimensional complex features from the images is the non-linearity introduced by the activation function.
This paper explores the performance of one of the CNN architecture ALexNet on MNIST and CIFAR10 datasets using oscillating activation function (GCU) and some other commonly used activation functions like ReLu, PReLu, and Mish.
arXiv Detail & Related papers (2022-11-13T11:17:13Z) - Nish: A Novel Negative Stimulated Hybrid Activation Function [5.482532589225552]
We propose a novel non-monotonic activation function called Negative Stimulated Hybrid Activation Function (Nish)
It behaves like a Rectified Linear Unit (ReLU) function for values greater than zero, and a sinus-sigmoidal function for values less than zero.
The proposed function incorporates the sigmoid and sine wave, allowing new dynamics over traditional ReLU activations.
arXiv Detail & Related papers (2022-10-17T13:32:52Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z) - Trainable Activation Function in Image Classification [0.0]
This paper focus on how to make the activation function trainable for deep neural networks.
We use series and linear combination of different activation functions make activation functions continuously variable.
arXiv Detail & Related papers (2020-04-28T03:50:53Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.