Domain Adaptation for Medical Image Segmentation using
Transformation-Invariant Self-Training
- URL: http://arxiv.org/abs/2307.16660v1
- Date: Mon, 31 Jul 2023 13:42:56 GMT
- Title: Domain Adaptation for Medical Image Segmentation using
Transformation-Invariant Self-Training
- Authors: Negin Ghamsarian, Javier Gamazo Tejero, Pablo M\'arquez Neila,
Sebastian Wolf, Martin Zinkernagel, Klaus Schoeffmann, Raphael Sznitman
- Abstract summary: We propose a semi-supervised learning strategy for domain adaptation termed transformation-invariant self-training (TI-ST)
The proposed method assesses pixel-wise pseudo-labels' reliability and filters out unreliable detections during self-training.
- Score: 7.738197566031678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Models capable of leveraging unlabelled data are crucial in overcoming large
distribution gaps between the acquired datasets across different imaging
devices and configurations. In this regard, self-training techniques based on
pseudo-labeling have been shown to be highly effective for semi-supervised
domain adaptation. However, the unreliability of pseudo labels can hinder the
capability of self-training techniques to induce abstract representation from
the unlabeled target dataset, especially in the case of large distribution
gaps. Since the neural network performance should be invariant to image
transformations, we look to this fact to identify uncertain pseudo labels.
Indeed, we argue that transformation invariant detections can provide more
reasonable approximations of ground truth. Accordingly, we propose a
semi-supervised learning strategy for domain adaptation termed
transformation-invariant self-training (TI-ST). The proposed method assesses
pixel-wise pseudo-labels' reliability and filters out unreliable detections
during self-training. We perform comprehensive evaluations for domain
adaptation using three different modalities of medical images, two different
network architectures, and several alternative state-of-the-art domain
adaptation methods. Experimental results confirm the superiority of our
proposed method in mitigating the lack of target domain annotation and boosting
segmentation performance in the target domain.
Related papers
- AdaptDiff: Cross-Modality Domain Adaptation via Weak Conditional Semantic Diffusion for Retinal Vessel Segmentation [10.958821619282748]
We present an unsupervised domain adaptation (UDA) method named AdaptDiff.
It enables a retinal vessel segmentation network trained on fundus photography (FP) to produce satisfactory results on unseen modalities.
Our results demonstrate a significant improvement in segmentation performance across all unseen datasets.
arXiv Detail & Related papers (2024-10-06T23:04:29Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Learning from Scale-Invariant Examples for Domain Adaptation in Semantic
Segmentation [6.320141734801679]
We propose a novel approach of exploiting scale-invariance property of semantic segmentation model for self-supervised domain adaptation.
Our algorithm is based on a reasonable assumption that, in general, regardless of the size of the object and stuff (given context) the semantic labeling should be unchanged.
We show that this constraint is violated over the images of the target domain, and hence could be used to transfer labels in-between differently scaled patches.
arXiv Detail & Related papers (2020-07-28T19:40:45Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.