Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification
- URL: http://arxiv.org/abs/2206.13123v1
- Date: Mon, 27 Jun 2022 09:02:16 GMT
- Title: Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification
- Authors: Dwarikanath Mahapatra
- Abstract summary: We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
- Score: 5.6512908295414
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The success of deep learning has set new benchmarks for many medical image
analysis tasks. However, deep models often fail to generalize in the presence
of distribution shifts between training (source) data and test (target) data.
One method commonly employed to counter distribution shifts is domain
adaptation: using samples from the target domain to learn to account for
shifted distributions. In this work we propose an unsupervised domain
adaptation approach that uses graph neural networks and, disentangled semantic
and domain invariant structural features, allowing for better performance
across distribution shifts. We propose an extension to swapped autoencoders to
obtain more discriminative features. We test the proposed method for
classification on two challenging medical image datasets with distribution
shifts - multi center chest Xray images and histopathology images. Experiments
show our method achieves state-of-the-art results compared to other domain
adaptation methods.
Related papers
- Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Domain Adaptation for Medical Image Segmentation using
Transformation-Invariant Self-Training [7.738197566031678]
We propose a semi-supervised learning strategy for domain adaptation termed transformation-invariant self-training (TI-ST)
The proposed method assesses pixel-wise pseudo-labels' reliability and filters out unreliable detections during self-training.
arXiv Detail & Related papers (2023-07-31T13:42:56Z) - Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
This work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation.
In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift.
Experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance.
arXiv Detail & Related papers (2023-06-06T08:56:58Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
We propose a two-stage approach for source-free domain adaptive image segmentation.
We focus on generating target-specific pseudo labels while suppressing high entropy regions.
In the second stage, we focus on adapting the network for task-specific representation.
arXiv Detail & Related papers (2022-03-29T17:50:22Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
We propose a novel semi-supervised learning framework for segmentation of volumetric images from new unlabeled domains.
We jointly use supervised and contrastive learning, also introducing a contrastive pairing scheme that leverages similarity between nearby slices in 3D.
arXiv Detail & Related papers (2022-03-07T19:02:26Z) - Unsupervised Domain Adaptation with Variational Approximation for
Cardiac Segmentation [15.2292571922932]
Unsupervised domain adaptation is useful in medical image segmentation.
We propose a new framework, where the latent features of both domains are driven towards a common and parameterized variational form.
This is achieved by two networks based on variational auto-encoders (VAEs) and a regularization for this variational approximation.
arXiv Detail & Related papers (2021-06-16T13:00:39Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Domain Generalizer: A Few-shot Meta Learning Framework for Domain
Generalization in Medical Imaging [23.414905586808874]
We adapt a domain generalization method based on a model-agnostic meta-learning framework to biomedical imaging.
The method learns a domain-agnostic feature representation to improve generalization of models to the unseen test distribution.
Our results suggest that the method could help generalize models across different medical centers, image acquisition protocols, anatomies, different regions in a given scan, healthy and diseased populations across varied imaging modalities.
arXiv Detail & Related papers (2020-08-18T03:35:56Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.