論文の概要: Image Synthesis under Limited Data: A Survey and Taxonomy
- arxiv url: http://arxiv.org/abs/2307.16879v1
- Date: Mon, 31 Jul 2023 17:45:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 13:00:52.571207
- Title: Image Synthesis under Limited Data: A Survey and Taxonomy
- Title(参考訳): 限られたデータに基づく画像合成:調査と分類
- Authors: Mengping Yang, Zhe Wang
- Abstract要約: 与えられたデータ分布を再現して新しいサンプルを作成することを目的とした深層生成モデルは、近年、前例のない進歩を遂げている。
限られたデータに基づいてトレーニングを行う場合、生成モデルは過度な適合と記憶によるパフォーマンス劣化に悩まされる傾向にある。
本調査は,限られたデータに基づく画像合成の開発に関する包括的レビューと新しい分類法を提供する。
- 参考スコア(独自算出の注目度): 4.0989155767548375
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep generative models, which target reproducing the given data distribution
to produce novel samples, have made unprecedented advancements in recent years.
Their technical breakthroughs have enabled unparalleled quality in the
synthesis of visual content. However, one critical prerequisite for their
tremendous success is the availability of a sufficient number of training
samples, which requires massive computation resources. When trained on limited
data, generative models tend to suffer from severe performance deterioration
due to overfitting and memorization. Accordingly, researchers have devoted
considerable attention to develop novel models that are capable of generating
plausible and diverse images from limited training data recently. Despite
numerous efforts to enhance training stability and synthesis quality in the
limited data scenarios, there is a lack of a systematic survey that provides 1)
a clear problem definition, critical challenges, and taxonomy of various tasks;
2) an in-depth analysis on the pros, cons, and remain limitations of existing
literature; as well as 3) a thorough discussion on the potential applications
and future directions in the field of image synthesis under limited data. In
order to fill this gap and provide a informative introduction to researchers
who are new to this topic, this survey offers a comprehensive review and a
novel taxonomy on the development of image synthesis under limited data. In
particular, it covers the problem definition, requirements, main solutions,
popular benchmarks, and remain challenges in a comprehensive and all-around
manner.
- Abstract(参考訳): 与えられたデータ分布を再生して新しいサンプルを生成する深層生成モデルは近年、前例のない進歩を遂げている。
彼らの技術的ブレークスルーにより、ビジュアルコンテンツの合成において、例外なく品質が向上した。
しかし、その大きな成功の1つの重要な前提条件は、大量の計算リソースを必要とする十分な数のトレーニングサンプルが利用できることである。
限られたデータでトレーニングすると、生成モデルは過剰なフィッティングと記憶のためにパフォーマンスの悪化に苦しむ傾向がある。
そのため、研究者は近年、限られたトレーニングデータから可視で多様な画像を生成できる新しいモデルの開発に多大な注意を払っている。
限られたデータシナリオにおけるトレーニングの安定性と合成品質を高めるための多くの努力にもかかわらず、体系的な調査が提供されていない。
1) 様々な課題の明確な問題定義,批判的課題,分類
2) 既存の文献の長所,短所及び限度に関する詳細な分析
3) 限られたデータに基づく画像合成の分野における潜在的な応用と今後の方向性に関する徹底的な議論。
このギャップを埋め、この話題に新しい研究者に情報を提供するために、この調査は、限られたデータによる画像合成の発展に関する包括的レビューと新しい分類法を提供する。
特に、問題定義、要件、主要なソリューション、人気のあるベンチマークをカバーし、包括的かつ全周的な方法で課題を解決します。
関連論文リスト
- Image Distillation for Safe Data Sharing in Histopathology [10.398266052019675]
病理組織学は、臨床医が正確な診断を行い、疾患の予後を判断し、適切な治療戦略を立案するのに役立つ。
深層学習技術が医療分野で成功していることが証明されるにつれ、主な課題はデータ可用性の制限とデータ共有とプライバシに関する懸念である。
私たちは、制約なしに共有できる必須情報をカプセル化する小さな合成データセットを作成します。
我々は,潜在拡散モデルを訓練し,少数の可読性合成画像を用いた新しい蒸留合成データセットを構築した。
論文 参考訳(メタデータ) (2024-06-19T13:19:08Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Best Practices and Lessons Learned on Synthetic Data for Language Models [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Generative AI for Synthetic Data Generation: Methods, Challenges and the
Future [12.506811635026907]
大規模言語モデル(LLM)から合成データを生成する研究の最近の動向
本稿では,タスク固有トレーニングデータの生成にこれらの巨大なLCMを活用する高度な技術について述べる。
論文 参考訳(メタデータ) (2024-03-07T03:38:44Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects [84.36935309169567]
ゼロショット学習(ZSL)における微粒化解析の最近の進歩を概観する。
まず、各カテゴリの詳細な分析を行い、既存の手法と手法の分類について述べる。
次に、ベンチマークを要約し、公開データセット、モデル、実装、およびライブラリとしての詳細について説明する。
論文 参考訳(メタデータ) (2024-01-31T11:51:24Z) - Comprehensive Exploration of Synthetic Data Generation: A Survey [4.485401662312072]
この研究は、過去10年間で417のSynthetic Data Generationモデルを調査します。
その結果、ニューラルネットワークベースのアプローチが普及し、モデルのパフォーマンスと複雑性が向上したことが明らかになった。
コンピュータビジョンが支配的であり、GANが主要な生成モデルであり、拡散モデル、トランスフォーマー、RNNが競合する。
論文 参考訳(メタデータ) (2024-01-04T20:23:51Z) - Embrace Limited and Imperfect Training Datasets: Opportunities and
Challenges in Plant Disease Recognition Using Deep Learning [5.526950086166696]
貧弱なデータセットを受け入れることは可能であり、これらのデータセットの使用に伴う課題を明確に定義することを目的としています。
我々は植物病の認識に重点を置いているが、貧しいデータセットの受け入れと分析の原則は農業を含む幅広い分野に適用可能であることを強調している。
論文 参考訳(メタデータ) (2023-05-19T08:58:09Z) - Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [5.0243930429558885]
Few-Shot Semanticはコンピュータビジョンの新しいタスクであり、いくつかの例で新しいセマンティッククラスをセグメンテーションできるモデルを設計することを目的としている。
本稿では、Few-Shot Semanticの総合的な調査からなり、その進化を辿り、様々なモデル設計を探求する。
論文 参考訳(メタデータ) (2023-04-12T13:07:37Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
そこで本研究では,高品質な自然主義的合成隠蔽顔を製造するための2つの手法を提案する。
両手法の有効性とロバスト性を実証的に示す。
我々は,RealOccとRealOcc-Wildという,微細なアノテーションを付加した高精細な実世界の顔データセットを2つ提示する。
論文 参考訳(メタデータ) (2022-05-12T17:03:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。