Using Kernel SHAP XAI Method to optimize the Network Anomaly Detection
Model
- URL: http://arxiv.org/abs/2308.00074v1
- Date: Mon, 31 Jul 2023 18:47:45 GMT
- Title: Using Kernel SHAP XAI Method to optimize the Network Anomaly Detection
Model
- Authors: Khushnaseeb Roshan, Aasim Zafar
- Abstract summary: Anomaly detection and its explanation is important in many research areas such as intrusion detection, fraud detection, unknown attack detection in network traffic and logs.
It is challenging to identify the cause or explanation of why one instance is an anomaly?
XAI provides tools and techniques to interpret and explain the output and working of complex models such as Deep Learning (DL)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection and its explanation is important in many research areas
such as intrusion detection, fraud detection, unknown attack detection in
network traffic and logs. It is challenging to identify the cause or
explanation of why one instance is an anomaly? and the other is not due to its
unbounded and lack of supervisory nature. The answer to this question is
possible with the emerging technique of explainable artificial intelligence
(XAI). XAI provides tools and techniques to interpret and explain the output
and working of complex models such as Deep Learning (DL). This paper aims to
detect and explain network anomalies with XAI, kernelSHAP method. The same
approach is used to improve the network anomaly detection model in terms of
accuracy, recall, precision and f score. The experiment is conduced with the
latest CICIDS2017 dataset. Two models are created (Model_1 and OPT_Model) and
compared. The overall accuracy and F score of OPT_Model (when trained in
unsupervised way) are 0.90 and 0.76, respectively.
Related papers
- Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
This research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic.
We trained all models to the accuracy of 90% on the UNSW-NB15 dataset.
We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness.
arXiv Detail & Related papers (2024-06-14T03:11:01Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
We introduce a novel approach to backdoor detection using two tensor decomposition methods applied to network activations.
This has a number of advantages relative to existing detection methods, including the ability to analyze multiple models at the same time.
Results show that our method detects backdoored networks more accurately and efficiently than current state-of-the-art methods.
arXiv Detail & Related papers (2024-01-06T03:08:28Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - Utilizing XAI technique to improve autoencoder based model for computer
network anomaly detection with shapley additive explanation(SHAP) [0.0]
Machine learning (ML) and Deep Learning (DL) methods are being adopted rapidly, especially in computer network security.
Lack of transparency of ML and DL based models is a major obstacle to their implementation and criticized due to its black-box nature.
XAI is a promising area that can improve the trustworthiness of these models by giving explanations and interpreting its output.
arXiv Detail & Related papers (2021-12-14T09:42:04Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.