Explainable AI for Comparative Analysis of Intrusion Detection Models
- URL: http://arxiv.org/abs/2406.09684v2
- Date: Wed, 3 Jul 2024 10:32:51 GMT
- Title: Explainable AI for Comparative Analysis of Intrusion Detection Models
- Authors: Pap M. Corea, Yongxin Liu, Jian Wang, Shuteng Niu, Houbing Song,
- Abstract summary: This research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic.
We trained all models to the accuracy of 90% on the UNSW-NB15 dataset.
We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness.
- Score: 20.683181384051395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence (XAI) has become a widely discussed topic, the related technologies facilitate better understanding of conventional black-box models like Random Forest, Neural Networks and etc. However, domain-specific applications of XAI are still insufficient. To fill this gap, this research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic on the same dataset using occlusion sensitivity. The models evaluated include Linear Regression, Logistic Regression, Linear Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Decision Trees, and Multi-Layer Perceptrons (MLP). We trained all models to the accuracy of 90\% on the UNSW-NB15 Dataset. We found that most classifiers leverage only less than three critical features to achieve such accuracies, indicating that effective feature engineering could actually be far more important for intrusion detection than applying complicated models. We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness. Data and code available at https://github.com/pcwhy/XML-IntrusionDetection.git
Related papers
- Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
This study investigates the potential of feature attribution methods to filter out uninformative features in input data for regression problems.
We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space.
To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
arXiv Detail & Related papers (2024-09-25T09:50:51Z) - Using Kernel SHAP XAI Method to optimize the Network Anomaly Detection
Model [0.0]
Anomaly detection and its explanation is important in many research areas such as intrusion detection, fraud detection, unknown attack detection in network traffic and logs.
It is challenging to identify the cause or explanation of why one instance is an anomaly?
XAI provides tools and techniques to interpret and explain the output and working of complex models such as Deep Learning (DL)
arXiv Detail & Related papers (2023-07-31T18:47:45Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
We introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights.
In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data.
Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
arXiv Detail & Related papers (2022-12-15T20:20:18Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Utilizing XAI technique to improve autoencoder based model for computer
network anomaly detection with shapley additive explanation(SHAP) [0.0]
Machine learning (ML) and Deep Learning (DL) methods are being adopted rapidly, especially in computer network security.
Lack of transparency of ML and DL based models is a major obstacle to their implementation and criticized due to its black-box nature.
XAI is a promising area that can improve the trustworthiness of these models by giving explanations and interpreting its output.
arXiv Detail & Related papers (2021-12-14T09:42:04Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.