論文の概要: A Sentence is Worth a Thousand Pictures: Can Large Language Models Understand Hum4n L4ngu4ge and the W0rld behind W0rds?
- arxiv url: http://arxiv.org/abs/2308.00109v2
- Date: Wed, 4 Sep 2024 09:27:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 04:56:30.616504
- Title: A Sentence is Worth a Thousand Pictures: Can Large Language Models Understand Hum4n L4ngu4ge and the W0rld behind W0rds?
- Title(参考訳): 巨大な言語モデルはHum4n L4ngu4geとW0rldを理解できるか?
- Authors: Evelina Leivada, Gary Marcus, Fritz Günther, Elliot Murphy,
- Abstract要約: LLM(Large Language Models)は、人間の言語的パフォーマンスに関する主張と関連付けられている。
対象認知システムの理論的に有意な表現としてLLMの寄与を分析する。
我々は,より高い処理レベルからのトップダウンフィードバックを通じて,モデルが全体像を見る能力を評価する。
- 参考スコア(独自算出の注目度): 2.7342737448775534
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern Artificial Intelligence applications show great potential for language-related tasks that rely on next-word prediction. The current generation of Large Language Models (LLMs) have been linked to claims about human-like linguistic performance and their applications are hailed both as a step towards artificial general intelligence and as a major advance in understanding the cognitive, and even neural basis of human language. To assess these claims, first we analyze the contribution of LLMs as theoretically informative representations of a target cognitive system vs. atheoretical mechanistic tools. Second, we evaluate the models' ability to see the bigger picture, through top-down feedback from higher levels of processing, which requires grounding in previous expectations and past world experience. We hypothesize that since models lack grounded cognition, they cannot take advantage of these features and instead solely rely on fixed associations between represented words and word vectors. To assess this, we designed and ran a novel 'leet task' (l33t t4sk), which requires decoding sentences in which letters are systematically replaced by numbers. The results suggest that humans excel in this task whereas models struggle, confirming our hypothesis. We interpret the results by identifying the key abilities that are still missing from the current state of development of these models, which require solutions that go beyond increased system scaling.
- Abstract(参考訳): 現代の人工知能アプリケーションは、単語の予測に依存する言語関連のタスクに大きな可能性を示している。
現在のLarge Language Models(LLMs)は、人間の言語的パフォーマンスに関する主張と関連付けられており、その応用は、人工知能への一歩として、そして人間の言語の認知的、さらには神経的基礎を理解するための大きな進歩として、双方に称賛されている。
これらの主張を評価するために、まず、LLMの貢献を目標認知システムの理論的に有意な表現として分析する。
第2に、より高度な処理レベルからのトップダウンフィードバックを通じて、過去の期待と過去の世界経験を基礎づけることによって、モデルが全体像を見る能力を評価する。
モデルには認識の基盤がないため、これらの特徴を活用できず、表現された単語と単語ベクトルの固定的な関連にのみ依存する、という仮説を立てる。
これを評価するために、我々は、文字を数字に体系的に置き換える復号文を必要とする新しい「リートタスク」(l33t t4sk)を設計し、実行した。
結果は、人間がこのタスクに優れているのに対して、モデルは苦労し、我々の仮説を裏付けていることを示唆している。
これらのモデルの開発状況からまだ欠落している重要な能力を特定して結果を解釈する。
関連論文リスト
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Structured, flexible, and robust: benchmarking and improving large
language models towards more human-like behavior in out-of-distribution
reasoning tasks [39.39138995087475]
言語単独で統計的パターンを学習することで、どの程度の人間的な思考を捉えることができるのかを問う。
本ベンチマークは2つの問題解決領域(計画と説明生成)を含み,一般化を必要とするように設計されている。
このベンチマークでは、人間はLSMよりもはるかに堅牢であることが分かりました。
論文 参考訳(メタデータ) (2022-05-11T18:14:33Z) - Estimating the Personality of White-Box Language Models [0.589889361990138]
大規模なテキストコーパスで訓練された大規模言語モデルは、至る所で広範囲のアプリケーションで使用されている。
既存の研究は、これらのモデルが人間の偏見を捉え、捉えていることを示している。
これらのバイアス、特に害を引き起こす可能性のあるバイアスの多くは、十分に調査されている。
しかし、これらのモデルによって受け継がれた人間の性格特性を推測し、変化させる研究は、ほとんど、あるいは存在しない。
論文 参考訳(メタデータ) (2022-04-25T23:53:53Z) - A Survey of Knowledge Enhanced Pre-trained Models [28.160826399552462]
知識注入を伴う事前学習言語モデルを知識強化事前学習言語モデル(KEPLM)と呼ぶ。
これらのモデルは深い理解と論理的推論を示し、解釈可能性を導入する。
論文 参考訳(メタデータ) (2021-10-01T08:51:58Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。