Getting pwn'd by AI: Penetration Testing with Large Language Models
- URL: http://arxiv.org/abs/2308.00121v3
- Date: Thu, 17 Aug 2023 12:26:40 GMT
- Title: Getting pwn'd by AI: Penetration Testing with Large Language Models
- Authors: Andreas Happe, J\"urgen Cito
- Abstract summary: This paper explores the potential usage of large-language models, such as GPT3.5, to augment penetration testers with AI sparring partners.
We explore the feasibility of supplementing penetration testers with AI models for two distinct use cases: high-level task planning for security testing assignments and low-level vulnerability hunting within a vulnerable virtual machine.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of software security testing, more specifically penetration
testing, is an activity that requires high levels of expertise and involves
many manual testing and analysis steps. This paper explores the potential usage
of large-language models, such as GPT3.5, to augment penetration testers with
AI sparring partners. We explore the feasibility of supplementing penetration
testers with AI models for two distinct use cases: high-level task planning for
security testing assignments and low-level vulnerability hunting within a
vulnerable virtual machine. For the latter, we implemented a closed-feedback
loop between LLM-generated low-level actions with a vulnerable virtual machine
(connected through SSH) and allowed the LLM to analyze the machine state for
vulnerabilities and suggest concrete attack vectors which were automatically
executed within the virtual machine. We discuss promising initial results,
detail avenues for improvement, and close deliberating on the ethics of
providing AI-based sparring partners.
Related papers
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - Towards Automated Penetration Testing: Introducing LLM Benchmark, Analysis, and Improvements [1.4433703131122861]
Large language models (LLMs) have shown potential across various domains, including cybersecurity.
There is currently no comprehensive, open, end-to-end automated penetration testing benchmark.
This paper introduces a novel open benchmark for LLM-based automated penetration testing.
arXiv Detail & Related papers (2024-10-22T16:18:41Z) - CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher [1.6652242654250329]
We develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks.
We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools.
We introduce the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark.
arXiv Detail & Related papers (2024-08-21T14:24:04Z) - Test Oracle Automation in the era of LLMs [52.69509240442899]
Large Language Models (LLMs) have demonstrated remarkable proficiency in tackling diverse software testing tasks.
This paper aims to enable discussions on the potential of using LLMs for test oracle automation, along with the challenges that may emerge during the generation of various types of oracles.
arXiv Detail & Related papers (2024-05-21T13:19:10Z) - A Preliminary Study on Using Large Language Models in Software
Pentesting [2.0551676463612636]
Large language models (LLM) are perceived to offer promising potentials for automating security tasks.
We investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code.
arXiv Detail & Related papers (2024-01-30T21:42:59Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - PentestGPT: An LLM-empowered Automatic Penetration Testing Tool [20.449761406790415]
Large Language Models (LLMs) have shown significant advancements in various domains.
We evaluate the performance of LLMs on real-world penetration testing tasks using a robust benchmark created from test machines with platforms.
We introduce PentestGPT, an LLM-empowered automatic penetration testing tool.
arXiv Detail & Related papers (2023-08-13T14:35:50Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.