論文の概要: Federated Learning for Data and Model Heterogeneity in Medical Imaging
- arxiv url: http://arxiv.org/abs/2308.00155v1
- Date: Mon, 31 Jul 2023 21:08:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 16:21:07.749304
- Title: Federated Learning for Data and Model Heterogeneity in Medical Imaging
- Title(参考訳): 医用画像におけるデータとモデル不均一性の融合学習
- Authors: Hussain Ahmad Madni, Rao Muhammad Umer and Gian Luca Foresti
- Abstract要約: Federated Learning(FL)は、複数のクライアントがデータを互いに中央サーバと共有することなく、協調学習に参加する、進化する機械学習手法である。
病院や産業などの現実世界のアプリケーションでは、FLはデータ不均一性とモデル不均一性の課題に対処する。
このような問題を解決するためにMDH-FL(Exploiting Model and Data Heterogeneity in FL)を提案する。
- 参考スコア(独自算出の注目度): 19.0931609571649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is an evolving machine learning method in which
multiple clients participate in collaborative learning without sharing their
data with each other and the central server. In real-world applications such as
hospitals and industries, FL counters the challenges of data heterogeneity and
model heterogeneity as an inevitable part of the collaborative training. More
specifically, different organizations, such as hospitals, have their own
private data and customized models for local training. To the best of our
knowledge, the existing methods do not effectively address both problems of
model heterogeneity and data heterogeneity in FL. In this paper, we exploit the
data and model heterogeneity simultaneously, and propose a method, MDH-FL
(Exploiting Model and Data Heterogeneity in FL) to solve such problems to
enhance the efficiency of the global model in FL. We use knowledge distillation
and a symmetric loss to minimize the heterogeneity and its impact on the model
performance. Knowledge distillation is used to solve the problem of model
heterogeneity, and symmetric loss tackles with the data and label
heterogeneity. We evaluate our method on the medical datasets to conform the
real-world scenario of hospitals, and compare with the existing methods. The
experimental results demonstrate the superiority of the proposed approach over
the other existing methods.
- Abstract(参考訳): Federated Learning(FL)は、複数のクライアントがデータを互いに中央サーバと共有することなく、協調学習に参加する、進化する機械学習手法である。
病院や産業などの現実的な応用において、FLは、データ不均一性とモデル不均一性の課題を、共同トレーニングの必然的な部分として対処する。
具体的には、病院のような異なる組織は独自のプライベートデータを持ち、ローカルトレーニング用にカスタマイズされたモデルを持っている。
我々の知る限り、既存の手法はFLにおけるモデル不均一性とデータ不均一性の両方に効果的に対処しない。
本稿では,データとモデルの不均一性を同時に利用し,その問題を解決するためにMDH-FL(Exploiting Model and Data Heterogeneity in FL)を提案する。
我々は,不均一性とモデル性能への影響を最小限に抑えるために,知識蒸留と対称損失を用いる。
知識蒸留はモデル不均一性の問題を解決するために用いられ、対称損失はデータとラベルの不均一性に取り組む。
本手法は病院の現実シナリオに適合するように医療データセット上で評価し,既存の手法と比較する。
実験により,提案手法が既存手法よりも優れていることを示す。
関連論文リスト
- A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning [14.466679488063217]
ワンショットフェデレーション学習(FL)は、サーバとクライアント間の通信を1ラウンドに制限する。
モデルとデータの不均一性の両方を効果的に扱える統一的でデータフリーなワンショットFLフレームワーク(FedHydra)を提案する。
論文 参考訳(メタデータ) (2024-10-28T15:20:52Z) - Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment [1.2499537119440245]
フェデレートラーニング(FL)は、分散データソース間で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では、FLにおけるデータ不均一性について、製造の文脈で概観する。
本研究は,これらの異種性がモデルトレーニングに与える影響について考察し,その悪影響を緩和するための現在の手法を概観する。
論文 参考訳(メタデータ) (2024-08-18T17:49:44Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - Synthetic Data Aided Federated Learning Using Foundation Models [4.666380225768727]
ファウンデーションモデル(DPSDA-FL)を用いたFederated Learningを支援する微分プライベートデータを提案する。
実験の結果,DPSDA-FLは,非IID問題のあるFLにおいて,クラスリコールとクラス分類精度を最大26%, 9%向上できることがわかった。
論文 参考訳(メタデータ) (2024-07-06T20:31:43Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated Learning(FL)は、独立した学習者がデータをプライベートに処理する分散機械学習アプローチである。
現在普及しているデータ分割技術について検討し、その主な欠点を可視化する。
エントロピーと対称性を利用して「最も困難」かつ制御可能なデータ分布を構築する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:39:08Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。