KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation
- URL: http://arxiv.org/abs/2410.02808v1
- Date: Thu, 19 Sep 2024 14:21:38 GMT
- Title: KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation
- Authors: Zhihao Zhao, Yinzheng Zhao, Junjie Yang, Kai Huang, Nassir Navab, M. Ali Nasseri,
- Abstract summary: This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
- Score: 51.03868117057726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based vascular segmentation is becoming increasingly common in enhancing the screening and treatment of ophthalmic diseases. Deep learning structures based on U-Net have achieved relatively good performance in vascular segmentation. However, small blood vessels and capillaries tend to be lost during segmentation when passed through the traditional U-Net downsampling module. To address this gap, this paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation. Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions in feature extraction modules to adapt to the detailed tubular vascular structures. More specifically, we first employ a feature extractor with linear deformable convolution to capture vascular structure information form the input images. To better optimize the coordinate positions of deformable convolution, we employ the Kalman filter to enhance the perception of vascular structures in linear deformable convolution. Subsequently, the features of the vascular structures extracted are utilized as a conditioning element within a diffusion model by the Cross-Attention Aggregation module (CAAM) and the Channel-wise Soft Attention module (CSAM). These aggregations are designed to enhance the diffusion model's capability to generate vascular structures. Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) as well as the 3mm and 6mm of the OCTA-500 dataset, and the results show that the diffusion model proposed in this paper outperforms other methods.
Related papers
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
We propose OCTAMamba, a novel U-shaped network based on the Mamba architecture to segment vasculature in OCTA accurately.
OCTAMamba integrates a Quad Stream Efficient Mining Embedding Module for local feature extraction, a Multi-Scale Dilated Asymmetric Convolution Module to capture multi-scale vasculature, and a Focused Feature Recalibration Module to filter noise and highlight target areas.
Our method achieves efficient global modeling and local feature extraction while maintaining linear complexity, making it suitable for low-computation medical applications.
arXiv Detail & Related papers (2024-09-12T12:47:34Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Snake with Shifted Window: Learning to Adapt Vessel Pattern for OCTA Segmentation [2.314516220934268]
We propose the SSW- OCTA model, which integrates the advantages of deformable convolutions suited for tubular structures and the swin-transformer for global feature extraction.
Our model underwent testing and comparison on the OCTA-500 dataset, achieving state-of-the-art performance.
arXiv Detail & Related papers (2024-04-28T07:01:55Z) - Diffusion Adversarial Representation Learning for Self-supervised Vessel
Segmentation [36.65094442100924]
Vessel segmentation in medical images is one of the important tasks in the diagnosis of vascular diseases and therapy planning.
We introduce a novel diffusion adversarial representation learning (DARL) model that leverages a denoising diffusion probabilistic model with adversarial learning.
Our method significantly outperforms existing unsupervised and self-supervised methods in vessel segmentation.
arXiv Detail & Related papers (2022-09-29T06:06:15Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Modeling and hexahedral meshing of cerebral arterial networks from
centerlines [0.0]
Centerline-based representation is widely used to model large vascular networks with small vessels.
We propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines.
We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks.
arXiv Detail & Related papers (2022-01-20T16:30:17Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.