Diffusion Model for Camouflaged Object Detection
- URL: http://arxiv.org/abs/2308.00303v2
- Date: Sat, 5 Aug 2023 13:14:06 GMT
- Title: Diffusion Model for Camouflaged Object Detection
- Authors: Zhennan Chen, Rongrong Gao, Tian-Zhu Xiang, Fan Lin
- Abstract summary: We propose a diffusion-based framework for camouflaged object detection, termed diffCOD.
The proposed method achieves favorable performance compared to the existing 11 state-of-the-art methods.
- Score: 2.592600158870236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Camouflaged object detection is a challenging task that aims to identify
objects that are highly similar to their background. Due to the powerful
noise-to-image denoising capability of denoising diffusion models, in this
paper, we propose a diffusion-based framework for camouflaged object detection,
termed diffCOD, a new framework that considers the camouflaged object
segmentation task as a denoising diffusion process from noisy masks to object
masks. Specifically, the object mask diffuses from the ground-truth masks to a
random distribution, and the designed model learns to reverse this noising
process. To strengthen the denoising learning, the input image prior is encoded
and integrated into the denoising diffusion model to guide the diffusion
process. Furthermore, we design an injection attention module (IAM) to interact
conditional semantic features extracted from the image with the diffusion noise
embedding via the cross-attention mechanism to enhance denoising learning.
Extensive experiments on four widely used COD benchmark datasets demonstrate
that the proposed method achieves favorable performance compared to the
existing 11 state-of-the-art methods, especially in the detailed texture
segmentation of camouflaged objects. Our code will be made publicly available
at: https://github.com/ZNan-Chen/diffCOD.
Related papers
- DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
We propose a training-free method, dubbed DiffUHaul, for the object dragging task.
We first apply attention masking in each denoising step to make the generation more disentangled across different objects.
In the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance.
arXiv Detail & Related papers (2024-06-03T17:59:53Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation [11.80682025950519]
In this work, we investigate the diffusion (physics) in diffusion (machine learning) properties.
We propose our Cyclic One-Way Diffusion (COW) method to control the direction of diffusion phenomenon.
Our method provides a novel perspective to understand the task needs and is applicable to a wider range of customization scenarios.
arXiv Detail & Related papers (2023-06-14T05:25:06Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
Real-world image denoising aims to recover clean images from noisy images captured in natural environments.
diffusion models have achieved very promising results in the field of image generation, outperforming previous generation models.
This paper proposes a novel general denoising diffusion model that can be used for real-world image denoising.
arXiv Detail & Related papers (2023-05-08T04:48:03Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Image Embedding for Denoising Generative Models [0.0]
We focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process.
As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models.
arXiv Detail & Related papers (2022-12-30T17:56:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.