Image Embedding for Denoising Generative Models
- URL: http://arxiv.org/abs/2301.07485v1
- Date: Fri, 30 Dec 2022 17:56:07 GMT
- Title: Image Embedding for Denoising Generative Models
- Authors: Andrea Asperti, Davide Evangelista, Samuele Marro, Fabio Merizzi
- Abstract summary: We focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process.
As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising Diffusion models are gaining increasing popularity in the field of
generative modeling for several reasons, including the simple and stable
training, the excellent generative quality, and the solid probabilistic
foundation. In this article, we address the problem of {\em embedding} an image
into the latent space of Denoising Diffusion Models, that is finding a suitable
``noisy'' image whose denoising results in the original image. We particularly
focus on Denoising Diffusion Implicit Models due to the deterministic nature of
their reverse diffusion process. As a side result of our investigation, we gain
a deeper insight into the structure of the latent space of diffusion models,
opening interesting perspectives on its exploration, the definition of semantic
trajectories, and the manipulation/conditioning of encodings for editing
purposes. A particularly interesting property highlighted by our research,
which is also characteristic of this class of generative models, is the
independence of the latent representation from the networks implementing the
reverse diffusion process. In other words, a common seed passed to different
networks (each trained on the same dataset), eventually results in identical
images.
Related papers
- Edge-preserving noise for diffusion models [4.435514696080208]
We present a novel edge-preserving diffusion model that is a generalization of denoising diffusion probablistic models (DDPM)
In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise.
We show that our model's generative process converges faster to results that more closely match the target distribution.
arXiv Detail & Related papers (2024-10-02T13:29:52Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Factorized Diffusion Architectures for Unsupervised Image Generation and
Segmentation [24.436957604430678]
We develop a neural network architecture which, trained in an unsupervised manner as a denoising diffusion model, simultaneously learns to both generate and segment images.
Experiments demonstrate that our model achieves accurate unsupervised image segmentation and high-quality synthetic image generation across multiple datasets.
arXiv Detail & Related papers (2023-09-27T15:32:46Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
arXiv Detail & Related papers (2023-06-28T09:32:00Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
Real-world image denoising aims to recover clean images from noisy images captured in natural environments.
diffusion models have achieved very promising results in the field of image generation, outperforming previous generation models.
This paper proposes a novel general denoising diffusion model that can be used for real-world image denoising.
arXiv Detail & Related papers (2023-05-08T04:48:03Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - On Conditioning the Input Noise for Controlled Image Generation with
Diffusion Models [27.472482893004862]
Conditional image generation has paved the way for several breakthroughs in image editing, generating stock photos and 3-D object generation.
In this work, we explore techniques to condition diffusion models with carefully crafted input noise artifacts.
arXiv Detail & Related papers (2022-05-08T13:18:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.