論文の概要: DINO-CXR: A self supervised method based on vision transformer for chest
X-ray classification
- arxiv url: http://arxiv.org/abs/2308.00475v1
- Date: Tue, 1 Aug 2023 11:58:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 14:22:56.452024
- Title: DINO-CXR: A self supervised method based on vision transformer for chest
X-ray classification
- Title(参考訳): DINO-CXR:胸部X線分類のための視覚変換器を用いた自己監督法
- Authors: Mohammadreza Shakouri, Fatemeh Iranmanesh, Mahdi Eftekhari
- Abstract要約: 本稿では,胸部X線分類のための視覚変換器に基づく自己監督法であるDINO-CXRを提案する。
肺炎とCOVID-19の両方の検出において提案法の有効性を示すために比較分析を行った。
- 参考スコア(独自算出の注目度): 0.9883261192383611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The limited availability of labeled chest X-ray datasets is a significant
bottleneck in the development of medical imaging methods. Self-supervised
learning (SSL) can mitigate this problem by training models on unlabeled data.
Furthermore, self-supervised pretraining has yielded promising results in
visual recognition of natural images but has not been given much consideration
in medical image analysis. In this work, we propose a self-supervised method,
DINO-CXR, which is a novel adaptation of a self-supervised method, DINO, based
on a vision transformer for chest X-ray classification. A comparative analysis
is performed to show the effectiveness of the proposed method for both
pneumonia and COVID-19 detection. Through a quantitative analysis, it is also
shown that the proposed method outperforms state-of-the-art methods in terms of
accuracy and achieves comparable results in terms of AUC and F-1 score while
requiring significantly less labeled data.
- Abstract(参考訳): ラベル付き胸部X線データセットの可用性は、医療画像法の開発において重要なボトルネックとなっている。
自己教師付き学習(ssl)はラベルなしのデータでモデルをトレーニングすることでこの問題を軽減することができる。
さらに、自己監督型事前訓練は、自然画像の視覚的認識において有望な結果をもたらすが、医療画像解析においてはあまり考慮されていない。
本研究では,胸部X線分類のための視覚変換器をベースとした自己監督法であるDINO-CXRを提案する。
肺炎とCOVID-19の両方の検出において提案法の有効性を示すために比較分析を行った。
定量的解析により,提案手法は精度で最先端の手法より優れており,AUCとF-1のスコアで比較できるが,ラベル付きデータは非常に少ない。
関連論文リスト
- MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICXは、胸部X線画像からの埋め込みの形でリッチな表現をキャプチャするアプローチである。
自己教師付き胸部X線表現学習におけるMLVICXの性能を示す。
論文 参考訳(メタデータ) (2024-03-18T06:19:37Z) - Transfer learning method in the problem of binary classification of
chest X-rays [0.0]
胸部X線所見の迅速かつ迅速な検出により,早期に肺炎の発生を検出でき,即時治療を開始できる。
人工知能は、X線分析の手順を迅速かつ質的に改善し、不審な画像のさらなる考慮のために医師に勧告を与えることができる。
論文 参考訳(メタデータ) (2023-03-19T08:35:47Z) - COVID-19 Detection Based on Self-Supervised Transfer Learning Using
Chest X-Ray Images [38.65823547986758]
胸部X線(CXR)画像から新型コロナウイルスを検出するための自己教師伝達学習法を提案する。
オープンなCOVID-19 CXRデータセットの定量的評価と,視覚検査のための質的結果について検討した。
論文 参考訳(メタデータ) (2022-12-19T07:10:51Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
X線画像から意味のある表現を学習するための領域誘導マスク画像モデリング(RGMIM)を提案する。
RGMIMは、トレーニングセットの5%や10%といった小さなデータボリュームのパフォーマンスを、他の方法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2022-11-01T07:41:03Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
胸部X線(CXR)やCT(CT)などの画像検査は、臨床スタッフに有用な情報を提供することができる。
深層学習は、新型コロナウイルス感染症領域のセグメンテーションと疾患分類の実行に応用されている。
本研究では,バッジ深層学習とモデル校正を統合した新しいアンサンブル深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-05-27T20:06:45Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Pinball-OCSVM for early-stage COVID-19 diagnosis with limited
posteroanterior chest X-ray images [3.4935179780034247]
本研究は、新型コロナウイルス陽性のCXRサンプルを限定した状態で動作可能な、ピンボール損失関数に基づく1クラスサポートベクターマシン(PB-OCSVM)を提案する。
提案モデルの性能は従来のOCSVMや既存のディープラーニングモデルと比較し,実験結果から,提案モデルが最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-16T02:34:15Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。