論文の概要: Robust Linear Regression: Phase-Transitions and Precise Tradeoffs for
General Norms
- arxiv url: http://arxiv.org/abs/2308.00556v1
- Date: Tue, 1 Aug 2023 13:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 13:51:52.180434
- Title: Robust Linear Regression: Phase-Transitions and Precise Tradeoffs for
General Norms
- Title(参考訳): ロバスト線形回帰:一般ノルムの相転移と精密トレードオフ
- Authors: Elvis Dohmatob, Meyer Scetbon
- Abstract要約: 線形回帰モデルに対するテスト時間逆行攻撃の影響について検討する。
標準予測性能(正確性)の所定のレベルを維持しながら、どのモデルでも到達できる最適なロバストネスのレベルを決定する。
我々は、標準的な精度を損なうことなく、ロバスト性が達成可能なレジームと、トレードオフが避けられないレジームとを区別する正確なキャラクタリゼーションを得る。
- 参考スコア(独自算出の注目度): 29.936005822346054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the impact of test-time adversarial attacks on
linear regression models and determine the optimal level of robustness that any
model can reach while maintaining a given level of standard predictive
performance (accuracy). Through quantitative estimates, we uncover fundamental
tradeoffs between adversarial robustness and accuracy in different regimes. We
obtain a precise characterization which distinguishes between regimes where
robustness is achievable without hurting standard accuracy and regimes where a
tradeoff might be unavoidable. Our findings are empirically confirmed with
simple experiments that represent a variety of settings. This work applies to
feature covariance matrices and attack norms of any nature, and extends beyond
previous works in this area.
- Abstract(参考訳): 本稿では,線形回帰モデルに対するテスト時間逆攻撃の影響を調査し,与えられた標準予測性能(精度)を維持しながら,任意のモデルが到達可能なロバスト性の最適レベルを決定する。
定量的推定により、異なる体制における敵の堅牢性と精度の基本的なトレードオフを明らかにする。
標準精度を損なうことなく、堅牢性が達成可能な体制と、トレードオフが避けられないような体制とを区別する正確な特徴付けを求める。
実験の結果は, 様々な設定の簡単な実験で実証された。
この研究は、任意の性質の共分散行列と攻撃規範に適用され、この分野の以前の業績を超えて拡張される。
関連論文リスト
- A Fundamental Accuracy--Robustness Trade-off in Regression and Classification [0.0]
我々は、一般的な状況において、標準と敵のリスクの根本的なトレードオフを導出する。
具体例として、軽度規則性条件下での導出リッジ関数による回帰のトレードオフを評価する。
論文 参考訳(メタデータ) (2024-11-06T22:03:53Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - Understanding the Impact of Adversarial Robustness on Accuracy Disparity [18.643495650734398]
対向ロバスト性の影響を2つの部分に分解する: 頑健性制約により全てのクラスで標準精度を低下させる固有の効果と、クラス不均衡比によって引き起こされる影響である。
以上の結果から,実世界のデータセットよりも非線形モデルに拡張できる可能性が示唆された。
論文 参考訳(メタデータ) (2022-11-28T20:46:51Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
強靭性と精度のトレードオフは、敵文学において広く研究されている。
局所的不変性の帰納的バイアスを課す不適切に定義された頑健な誤差に由来する可能性がある。
定義上、SCOREは、最悪のケースの不確実性に対処しながら、堅牢性と正確性の間の和解を促進する。
論文 参考訳(メタデータ) (2022-02-21T10:36:09Z) - Adversarial robustness for latent models: Revisiting the robust-standard
accuracies tradeoff [12.386462516398472]
標準的なテストの精度を落とすために、しばしば逆行訓練が観察される。
本稿では、このトレードオフは、データが低次元構造を楽しむ場合に緩和されると論じる。
周囲次元に対する多様体次元が減少するにつれて、標準精度とロバスト精度の両方に関してほぼ最適に近いモデルが得られることを示す。
論文 参考訳(メタデータ) (2021-10-22T17:58:27Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
元のサンプルと拡張されたサンプルの埋め込み/表現の距離を規則化することは、ニューラルネットワークの堅牢性を改善するための一般的なテクニックである。
本稿では、これらの様々な正規化選択について検討し、埋め込みの正規化方法の理解を深める。
私たちが特定したジェネリックアプローチ(squared $ell$ regularized augmentation)は、それぞれ1つのタスクのために特別に設計されたいくつかの手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-25T22:40:09Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Precise Statistical Analysis of Classification Accuracies for
Adversarial Training [43.25761725062367]
この問題を治療するために、近年、様々な敵の訓練手順が提案されている。
我々は,逆向きに訓練されたミニマックスモデルの標準とロバストな精度を正確に評価する。
論文 参考訳(メタデータ) (2020-10-21T18:00:53Z) - Revisiting Ensembles in an Adversarial Context: Improving Natural
Accuracy [5.482532589225552]
頑丈なモデルと非ロバストなモデルの間には、依然として自然な精度に大きなギャップがある。
この性能差を軽減するために,多数のアンサンブル法について検討する。
ランダムにロバストなモデルからの予測と、ロバストモデルと標準モデルから特徴を融合する2つのスキームを考える。
論文 参考訳(メタデータ) (2020-02-26T15:45:58Z) - Understanding and Mitigating the Tradeoff Between Robustness and
Accuracy [88.51943635427709]
逆行訓練は、堅牢なエラーを改善するために、摂動でトレーニングセットを増強する。
拡張摂動が最適線形予測器からノイズのない観測を行う場合であっても,標準誤差は増大する可能性がある。
論文 参考訳(メタデータ) (2020-02-25T08:03:01Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。