DYMOND: DYnamic MOtif-NoDes Network Generative Model
- URL: http://arxiv.org/abs/2308.00770v1
- Date: Tue, 1 Aug 2023 18:20:05 GMT
- Title: DYMOND: DYnamic MOtif-NoDes Network Generative Model
- Authors: Giselle Zeno, Timothy La Fond, Jennifer Neville
- Abstract summary: We propose DYnamic MOtif-NoDes -- a generative model that considers changes in overall graph structure using temporal motif activity.
We show that DYMOND performs better at generating graph structure and node behavior similar to the observed network.
We also propose a new methodology to adapt graph structure metrics to better evaluate the temporal aspect of the network.
- Score: 14.207034497262741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motifs, which have been established as building blocks for network structure,
move beyond pair-wise connections to capture longer-range correlations in
connections and activity. In spite of this, there are few generative graph
models that consider higher-order network structures and even fewer that focus
on using motifs in models of dynamic graphs. Most existing generative models
for temporal graphs strictly grow the networks via edge addition, and the
models are evaluated using static graph structure metrics -- which do not
adequately capture the temporal behavior of the network. To address these
issues, in this work we propose DYnamic MOtif-NoDes (DYMOND) -- a generative
model that considers (i) the dynamic changes in overall graph structure using
temporal motif activity and (ii) the roles nodes play in motifs (e.g., one node
plays the hub role in a wedge, while the remaining two act as spokes). We
compare DYMOND to three dynamic graph generative model baselines on real-world
networks and show that DYMOND performs better at generating graph structure and
node behavior similar to the observed network. We also propose a new
methodology to adapt graph structure metrics to better evaluate the temporal
aspect of the network. These metrics take into account the changes in overall
graph structure and the individual nodes' behavior over time.
Related papers
- Retrieval Augmented Generation for Dynamic Graph Modeling [15.09162213134372]
Dynamic graph modeling is crucial for analyzing evolving patterns in various applications.
Existing approaches often integrate graph neural networks with temporal modules or redefine dynamic graph modeling as a generative sequence task.
We introduce the Retrieval-Augmented Generation for Dynamic Graph Modeling (RAG4DyG) framework, which leverages guidance from contextually and temporally analogous examples.
arXiv Detail & Related papers (2024-08-26T09:23:35Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
We propose MTD-GNN, a graph network for predicting temporally-dynamic edges for multiple types of relations.
We show that modeling multiple relations in our temporal-dynamic graph network can be mutually beneficial.
arXiv Detail & Related papers (2022-12-06T10:41:00Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
Existing works merely view a dynamic graph as a sequence of changes.
We formulate dynamic graphs as temporal edge sequences associated with joining time of.
vertex and timespan of edges.
A time-aware Transformer is proposed to embed.
vertex' dynamic connections and ToEs into the learned.
vertex representations.
arXiv Detail & Related papers (2022-07-01T15:32:56Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
We propose a novel framework, namely static- and dynamic-graph learning-neural network (GL)
The model acquires static and dynamic graph matrices from data to model long-term and short-term patterns respectively.
It achieves state-of-the-art performance on almost all datasets.
arXiv Detail & Related papers (2021-12-06T08:19:15Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs [26.77596449192451]
We propose a model that predicts the evolution of dynamic graphs.
Specifically, we use a graph neural network along with a recurrent architecture to capture the temporal evolution patterns of dynamic graphs.
We evaluate the proposed model on several artificial datasets following common network evolving dynamics, as well as on real-world datasets.
arXiv Detail & Related papers (2020-03-02T12:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.